

5.1.2.e Woo

5.1.2.e Woo

a direct 5.1.2.e Woo

Fax direct 5.1.2.e Woo

e-mail: 5.1.2.e Woo

lemonsanto.com

Registered address
Monsanto Europe S.A./N.V.
Haven 627
Scheldelaan 460
B-2040 Antwerp Belgium

Correspondence address
Monsanto Europe S.A./N.V.
Avenue de Tervuren 270-272
Tervurenlaan 270-272
B - 1150 Brussels Belgium

Board for the Authorisation of Plant Protection Products and Biocides PO Box 8030 6710 AA Ede Netherlands

Brussels, July 31, 2018

Subject: EFSA Reasoned Opinion: Review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005 – Monsanto comments

Dear Sir, Madam,

On April 17, 2018, the EFSA issued a Reasoned Opinion (RO) on the 'Review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005' (EFSA Journal 2018;16(5):5263).

After a careful reading, Monsanto identified some major concerns that we would like to formally raise before the Commission and Member States consider the next steps in the finalization of this Article 12 review. These concerns relate to the following elements: the considered residue definitions, the relevance of certain uses listed in the critical GAP and the allegedly missing but available data resulting in 'tentative' MRLs and 'indicative' risk assessments in the final RO.

Monsanto would have raised these concerns before finalization of this RO if we would have been given the opportunity to comment on a more advanced draft RO. Indeed, this final RO differs substantially from the draft version we were asked to comment on in 2014. Although we realize this is not a procedural requirement, it is in retrospect a missed opportunity.

We hope that the comments outlined in the document attached to this letter are still helpful and will be considered. At all time we remain at your disposal for any further clarification.

5.1.2.e Woo

Monsanto Europe S.A./N.V.

onev. d.	0 2	AUG. 20	18
no.		/	
ter behan	deling	beautw	nord
аан,	ජජ	persar	ekci
		Andrew Colombus Street	
Con verz	. Jan	paraet	dd
	-		
dosster	-		-

Date:

July 25, 2018

Author:

5.1.2.e Woo – Monsanto Europe S.A./N.V.

On April 17, 2018, the EFSA issued a Reasoned Opinion (RO) on the 'Review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005.' (EFSA Journal 2018;16(5):5263), further referred to as 2018-RO.

After reviewing this 2018-RO, Monsanto identified some major concerns, and would strongly urge the Commission and the Member States to keep the finalization of the Article 12 review for glyphosate on hold and request the Authority to amend its Opinion with consideration of our comments and concerns.

In Summary:

First, in this 2018-RO, EFSA proposes two (2) options for an amended residue definition for enforcement purposes. These proposed options are consistent with the recommendations issued In the Standing Committee on Plants Animals Food and Feed (SCoPAFF) meeting of September 22-23, 2016, during which the Commission and Member States discussed on which bases EFSA should review the MRLs for glyphosate under Art 12 of Regulation (EC) 396/2005. Agreement was reached that EFSA should consider two options, alternative to the current residue definition for enforcement purposes, but SCoPAFF confirmed the current residue definition for risk assessment purposes.

Monsanto urges the Commission and the Member States to consider a refined residue definition proposal for enforcement purposes that. This refined residue definition would not impact significantly impact the MRL proposals and would limit the impact on analytical enforcement complexity.

Secondly, we have identified a substantial amount of uses that should be critically reassessed for their relevance. These uses drive the critical GAP and therefore the MRL proposal but are of no agronomic or commercial relevance.

Thirdly, in this 2018-RO, the Authority concludes that based on the assessment of the available data, no apparent risk to consumers was identified but outlined an extensive list of "missing" information, rendering the consumer risk assessment 'indicative' and resulting in a substantial amount of 'tentative' MRLs. In this context, Monsanto would like to highlight that most of the alleged missing information is available. What's more, the lion share has been previously submitted and has must have been overlooked. Had we been given the opportunity to comment on an advanced draft version of this Reasoned opinion, the availability of this information could have been flagged, and the information resubmitted if needed.

Especially the fact that a substantial amount of available information has been overlooked should trigger the Commission and the Member States to mandate EFSA to reconsider its reasoned opinion this time taking all available information into account and consider the refined residue definition proposal.

Below, the refined residue definition proposal is further elaborated and the concern regarding the allegedly missing but available data is further substantiated.

1. Refined residue Definition proposal for enforcement purposes

With regards to the proposals for and amended residue definition for enforcement purposes, Monsanto invites the Commission and the member States to consider a refined residue definition based on the following:

Reference is made to a conclusion reached earlier in the Standing Committee on Food Chain and Animal Health (SCoPAFF) – meeting of February 3-4 of 2011.

During this meeting a RO from EFSA with regards to a "modification of the residue definition of glyphosate in genetically modified grain and soybeans and in products of animal origin" (EFSA Journal 2009; 7(9):1310, was discussed (further referred to as 2009-RO).

In this 2009-RO, EFSA proposed the residue definition for <u>risk assessment</u> as the **Sum of glyphosate**, **N-acetyl-glyphosate**, **AMPA and N-acetyl AMPA**, **calculated as glyphosate**. SCoPAFF agreed with this proposal.

In addition, in this 2009-RO, EFSA proposed for Maize and Soybeans, three (3) options for the residue definition for enforcement purposes were considered:

- Option 1: Glyphosate;
- Option 2: Sum of Glyphosate and N-acetyl-glyphosate expressed as glyphosate
- Option 3: N-acetyl glyphosate

For other plant commodities and animal commodities EFSA did not propose changes (it is residue definition for enforcement = glyphosate).

The SCoPAFF concluded that the residue definition for enforcement should not change (i.e. **Option 1 for Maize and Soybeans**). These SCoPAFF conclusions are the basis of the glyphosate residue definitions (risk assessment and enforcement) that are in force today.

For <u>conventional commodities</u>, <u>Monsanto agrees that</u> 'glyphosate' is to be considered a sufficient marker for enforcement purposes.

For <u>EPSPS - GM tolerant crop commodities</u> Monsanto would like to point out that 'glyphosate' is a sufficient marker for enforcement purposes and therefore no amended residue definition for enforcement purposes should be necessary. The latter was, clearly indicated by the conclusions of the February 2011 SCoPAFF and is also confirmed in EFSA's 2018-RO. Indeed, EFSA concluded in the 2018 RO as follows: "Overall the metabolic pattern was similar to that in genetically modified plants as the EPSPS modification does not affect the metabolism of glyphosate in genetically modified plants".

In order to take into account <u>GAT_GM</u> tolerant crop commodities, we refer to the **2013 JMPR** residue definitions:

- For Maize, Rape seed and soy bean: glyphosate and N-acetyl glyphosate expressed as glyphosate
- For other plant commodities: glyphosate

In order to take into account, the <u>GOX_GM</u> tolerant crop commodities, <u>5.1.2.f Woo</u>, we agree with and refer to the 2018-RO conclusion that AMPA is the main residue component detected at harvest.

Given the above Monsanto proposes the following refined residue definitions for enforcement purposes:

- For Maize and soy bean: glyphosate and N-acetyl glyphosate expressed as glyphosate
- For <u>OSR</u> and <u>canola</u>: glyphosate, N-acetyl glyphosate and AMPA expressed as glyphosate
- For <u>other</u> plant commodities including plants with glyphosate tolerant genetically modified varieties currently available on the market: glyphosate

Taking into account the above enforcement residue definitions, one can conclude that glyphosate and N-acetyl glyphosate are adequate markers in conventional and GM glyphosate tolerant crops relevant for use in animal feed (EPSPS and GAT). In addition, the 2018-RO EFSA concluded that glyphosate and N-acetyl glyphosate are not <u>significantly</u> metabolized in animals. This allows to conclude that also in animal commodities glyphosate and N-acetyl glyphosate are sufficient markers for enforcement purposes. The latter was acknowledged by JMPR in 2011 in its enforcement residue definition for animal commodities and confirmed again by JMPR in 2013. Given the above Monsanto's proposes the following residue definition for enforcement purposes:

For all <u>animal commodities</u>: glyphosate and N-acetyl glyphosate expressed as glyphosate

For risk assessment purposes, the residue definition is the sum of glyphosate, N-acetyl-glyphosate, AMPA and N-acetyl AMPA, calculated as glyphosate.

General comments on the GAP table for conventional crops (Appendix 1 to the 2018-RO)

Monsanto would urge for this GAP table to be substantially rationalized and for the relevance of certain crops and uses to be critically re-assessed. For instance, crops such as grapefruits, oranges, lemons, mandarins, almonds, brazil nuts, cashew nuts, chestnuts, coconuts, macadamia, pecans, pine nuts kernels, pistachios, table olives, olives for oil productions, bamboo Shoots, palm hearts, peanuts...are, but should not have been listed in critical outdoor GAP for Northern Europe. Cultivated fungi, which are also part of the Northern European GAP, grow in the dark and don't need weed control.

The critical GAP for many of the listed crops (mainly vegetables and herbs) is based on a L&G formulation (7.2 g/L) and involves a soil treatment or weed wiping up to 7 days before harvest, with a application rate of maximum 1.44 kg/ha. According to the comment in the table, up to 3 applications/year are authorized.

This GAP is to our knowledge nowhere registered and affects the critical GAP of the following crops: strawberries, blackberries, dewberries, raspberries, cranberries, currants, gooseberries, rose hips, mulberries, elderberries, table olives, beetroots, carrots, celeriac, horse radishes, jeruzalem artichokes, parsnips, parsley roots, radishes, salsifies, garlic, onions, shallots, spring onions, tomatoes, sweet peppers, aubergines, cucumbers, gherkins, courgettes, melons, pumpkins, brussels Sprouts, head cabbages, chinese cabbage, kohlrabies, lamb's lettuces, lettuces, escaroles, cresses, land cresses, roman rocket, red mustard, baby leaf crops, spinaches, purslanes, chards, water cresses, witloofs, chervil, chives, celery leaves, parsley, sage, rosemary, thyme, basil, laurel, tarragon, asapagus, cardoons, celeries, florence fennels, globe artichokes, leeks, rhubarbs, bamboo shoots, palm hearts, cultivated fungi, peanuts, poppy seeds, sesame seeds, cotton seeds, pumpkin seeds, safflower seeds, gold of pleasure seeds, castor beans, herbal infusions from flowers, herbal infusions from leaves and herbs, herbal infusions from roots, hops, seed spices, fruit spices, root and rhizome spices.

What's more, this GAP is totally unrealistic and a Lawn and garden label should not drive the MRL setting. There is no agronomic need or benefit to treat the weeds in vegetable fields up to 7 days before harvest. In addition, these uses are not covered by residue trials and, as mentioned by EFSA, may lead to exposure of the crop to glyphosate. Removing the unsustainable GAP related to those uses would significantly simplify the GAP table and allow to focus on realistic uses (as was the case with the draft EFSA RO of 2014). In addition, professional weed wiper uses have not been registered for these crops nor the crop groups they are part off. Data gaps for all these crops have been identified in the 2018-RO but, given the above, not relevant.

In the draft EFSA RO of 2014 the GAP for many vegetables and for berries was inter-row shielded application. In this 2014 draft RO, EFSA commented that the GAP needed to be clarified, as no PHI was proposed in most cases. As a follow-up, Monsanto did conduct a set for field trials on different vegetable groups. These data were provided in 2016 (see Appendix 3), but apparently overlooked, since the GAP changed (now driven by the above mentioned Lawn & Garden formulation).

3. Data indicated as 'missing' but available and not considered

With regards to the missing information, which resulted in 'tentative' MRLs and' indicative risk assessment, Monsanto would like to comment that a lot of available information has not been considered and it is totally unclear what information (residue data and GAP information) was considered and how, for instance, conversion factors (CF) were derived. To illustrate these concerns, we provide the following two examples: (1) the residue data supporting the Cotton Seed MRL (p 169 of the 2018-RO) belongs to Monsanto and does not correspond with the data Monsanto submitted; (2) Sufficient metabolism and residue data on dry pulses is available to refine the proposed AMPA conversion factor (CF=2). We are not sure what data was available to the Authority and how it was considered.

Appendix 1 to this document provides an overview of allegedly missing information that should have been considered (and was in most cases available or could have been provided) to the RMS and EFSA.

Monsanto regrets that no opportunity was offered to comment on a more final draft of this reasoned opinion. Indeed, only on May 28, 2014, The German BVL requested Monsanto to comment on a draft of the Reasoned Opinion. In its request BVL clearly asked us not to submit any additional data. On March 18, 2016 EFSA wrote a letter to relevant stakeholders requesting data (by April 15, 2016) in the context of EFSA's mandated assessment of the impact of glyphosate residues in feed of animal health (mainly metabolism and toxicology information) and included a reminder with regards to the ongoing glyphosate MRL review, urging Stakeholders to make sure that relevant data were made available to Rapporteur Member State Germany. Germany confirmed to Monsanto that only documents that appeared later than the commenting period for the EFSA Draft RO (issued May 28, 2014) should be submitted. On October 06, 2016, the BVL asked Monsanto to provide "only" GAPs authorized in third countries and the residue data supporting the import MRLs.

No further opportunity was offered to review a draft of the reasoned opinion (that dramatically changed since the 2014 version) or to submit additional information.

Given the fact that relevant and readily available information has not been considered, Monsanto urges the Commission and the Member States to (1) keep the finalization of the Article 12 review for glyphosate on hold and (2) to request the Authority to revise its Opinion with consideration of all available relevant information. Indeed, referring to Article 14 of Regulation 369/2005, a Regulation on the setting, modification or deletion of the glyphosate MRLs shall be prepared by the Commission. This Regulation should, according to point 2a of that article, consider the scientific and technical knowledge <u>available</u>. This condition has not been met since a lot of available data was overlooked.

APPENDIX 1 Data reported as missing but available

Additional information is indeed available. The Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate (EFSA Journal 2015;13(11):4302), provides a" list of studies to be generated, still ongoing or available but not peer reviewed". This List indicated the same missing analytical methods (primary, confirmatory and ILVs) compared to the missing analytical methods highlighted in the 2018-RO. Also, the need for an AMPA degradation study under acidic conditions was identified in the EFSA opinion on glyphosate.

The Glyphosate Task Force (Monsanto immediately initiated the studies needed to fill these requirements and Monsanto submitted these methods as part of the Art 43 glyphosate product renewal submissions. A reference list of these methods is presented below. If Monsanto would have been asked to comment on a more advanced version of the draft reasoned opinion, the availability of this information could have been flagged and subsequently formally been submitted at the request of the Authority under the timeline provisions of article 11.2 of Regulation 396/2005.

Author	Year	Title
5.1.2.e Woo	2016a	Analytical method for the determination of Glyphosate and AMPA in matrices of plant origin. MSL0027298, Non-GLP
5.1.2.e Woo	2015	Independent laboratory validation of an analytical method for the determination of glyphosate and AMPA in different matrices of plant origin. Unpublished study No S14-05172/GAB-1434V. GLP
5.1.2.e Woo 5.1.2.e Woo	2015	Validation of an Analytical Method for the Determination of Glyphosate and AMPA in Tobacco Using LC/MS/MS. MSL0027204, GLP
5.1.2.e Woo	2016	Independent Laboratory Validation of an Analytical Method for the Determination of Glyphosate and AMPA in Tobacco. MSL0027761, GLP
5.1.2.e Woo	2016b	Analytical method for the determination of N-Acetyl glyphosate in matrices of plant origin MSL0027300, Non-GLP
5.1.2.e Woo 5.1.2.e Woo	2016a	Independent Laboratory Validation of an Analytical Method for the Determination of N-Acetyl glyphosate in Matrices of Plant Origin. MSL0027695, GLP

5.1.2.e Woo	2016c	Analytical Method for the Determination of Glyphosate and AMPA in Matrices of Animal Origin. MSL0027299, non-GLP
5.1.2.e Wool	2016d	Analytical Method for the Determination of N-Acetyl Glyphosate in Matrices of Animal Origin. MSL0027301, non-GLP
5.1.2.e Woo 5.1.2.e Woo	2016b	Independent Laboratory Validation of Analytical Methods for the determination of Glyphosate and its Metabolites N-Acetyl Glyphosate and AMPA in matrices of animal origin. MSL0027696, GLP
5.1.2.e Woo	2016	Aminomethylphosphonic Acid (AMPA): Rate of Degradation of AMPA in one Acidic Soil Incubated under Aerobic Conditions, GTF Study No. EPS-2016-0309, Eurofins Agroscience Services Report No. S16-04460 / EPS-2016-0309

In the 2018-RO, EFSA also flagged many residue data gaps in the section "Magnitude of residues in plants". These data gaps clearly show that the data in the monograph has been overlooked and that data submitted to the RMS over the last couple of years have not been considered. All data available to the RMS in 2005 have been summarized by the RMS in an overview document (Appendix 2 to this document). All additional data submitted to the RMS in 2016 has been listed in Appendix 3.

A subset of the alleged missing but available or irrelevant missing trials is outlined below:

EFSA:" the application rates assessed during the peer review for the early treatments (BBCH 00-09), were significantly lower (2.16 kg/ha) compared to the most critical uses currently authorized and considered in this review. Moreover, representative uses were supported by residue trials confirming a no-residue situation while no residue trials, reflecting the most critical application rate authorised, are available."

Monsanto response: Residue trials following pre-emergent application rates as high as 8.64 kg/ha have been summarized and evaluated in the 2001 Monograph. (B6 Residues Table B 6.6.7-1 to 6)

 EFSA: "Similarly, also for soil application done at pre-emergence or before sowing, planting and after harvest, EFSA is of the opinion that at least two residue trials confirming the no-residue situation at the critical GAP considered in this review are still required. This approach is aligned to the current guidance document on MRL setting and extrapolation."

Monsanto response: Pre-emergence residue data from the monograph have been overlooked (B6 Residues Table B 6.6.7-1 to 6)

• EFSA: "Sunflower: only two trials are available to support the northern GAP for desiccation. Moreover, in these trials, residues were analysed for glyphosate only. According to the RMS, additional trials are available. However, since study reports for these trials were not reported to the RMS, they could not be evaluated by the RMS. Therefore, eight trials compliant with the northern outdoor GAP, eight trials compliant with the southern outdoor GAP and eight trials compliant with the import tolerance are required;"

Monsanto response: Data from 8 trials are available supporting the proposed GAP, and the results were used to set the current EU MRL (See Appendix 2). It is thus surprising that the RMS mentions that they hadn't received the reports. Nevertheless, the reports can be provided upon request. Data from 4 additional trials (South Europe) were submitted to the RMS in 2016 (See Appendix 3)

• **EFSA**: "Soybeans: eight trials compliant with the northern outdoor GAP, eight trials compliant with the southern outdoor GAP and eight trials compliant with the import tolerance are required;"

Monsanto response: Soybeans are not cultivated at commercial level in the North so it's unclear what GAP has been submitted by the member States and considered by the Authority. Data supporting the import MRL were submitted to the RMS in 2016. (See Appendix 3)

• **EFSA**:" Mustard seeds: four trials compliant with the northern outdoor GAP and four trials compliant with the southern outdoor GAP are required;"

Monsanto response: 4 trials covering the Northern GAP are available in the monograph. These 4 trials were considered for the current MRL setting (See Appendix 2) and conducted at 1.44 kg/ha (thus within 25% of current GAP) so should be suitable. The GAP for the South is not commercially relevant.

 EFSA:" Grass forage: although MRL and risk assessment values can be derived from the northern outdoor GAP, two residue trials compliant with the southern outdoor GAP are still required."

Monsanto response: 4 Southern European trials were submitted to the RMS in 2016 (See Appendix 3)

EFSA: regarding EPSPS genetically modified plants:" No residue data were available
for sugar beet roots. Therefore, the following data gap was identified: Eight residue
trials compliant with the import tolerance GAP for EPSPS-modified sugar beets"

Monsanto response: This data was submitted to the RMS in 2016 (See Appendix 3)

• **EFSA**: Maize and Soybeans: GAP details and supporting residue trials for the currently authorised import tolerance on EPSPS soybeans.

Monsanto response: For both crops, the Codex MRL is driven by a pre-harvest application. These data was submitted to the RMS in 2016 (See Appendix 3)

 EFSA: "Eight residue trials compliant with the import tolerance GAP for GOX-modified rapeseeds."

Monsanto response: Data was submitted to the RMS in 2016 (See Appendix 3)

• EFSA: "All available trials supporting the GAP on conventional maize were performed on EPSPS modified maize."

Monsanto response: This is not correct. The data supporting the Codex MRL on maize was submitted to the RMS in 2016 (See Appendix 3) and were conducted on conventional maize.

EFSA also identified the need to confirm the calculated plateau concentrations for AMPA with a soil degradation study in acidic soils. This study is available and has been submitted to RMS Germany earlier this year.

APPENDIX 2

German proposals to set MRLs for glyphosate and trimethyl sulfonium cation - 2005

(Part I) MRL Proposals (glyphosate / PMG anion)

1. Fruit 1.1 Citrus fruit Oranges Tangerines MRL EU MRL p 0.1* 0.0	proposal		
uits none 0.1*			
none 0.1*			
		cGAP: S-EU: 4.32 kg as/ha, ground treatment, PHI:	
		N-EU: No GAP.	
	0.1*	US: 17 trials, 1-2 x 4.48 - 3 x 8.97 kg as/ha, PHI: 1 - 21 d;	
		Glyphosate: 16 x < 0.05, 0.06 mg/kg	
		AMPA: 14 x < 0.05 mg/kg	
	0.1*	US: 17 trials, 1-3 x 4.48 - 3 x 8.97 kg as/ha, PHI: 1 - 21 d;	
		Glyphosate: $25 \times < 0.05, 2 \times < 0.06, 2 \times 0.08 \text{ mg/kg}$	
		AMPA: 24 x < 0.05 mg/kg	
es a constant of the constant	0.1*	ES: 3 trials, 1 x 4.8 kg as/ha, PHI: 6, 7 d;	
es S		Glyphosate: all <0.05 mg/kg	
es S		Glyphosate: grapefruit, lemon and mandarine:	
es			
es a constant of the constant		K _{max} = 0.07 mg/kg, K _{ber} = 0.10 mg/kg, 51MK = 0.05 mg/kg	
	0.5	US: 39 trials, 1-3 x 4.48 - 3 x 8.97 kg as/ha, PHI: 0 - 28 d; On	Only US reports
		Glyphosate: 25 x <0.05, 2 x <0.1, <0.13, 0.08, 0.14, 0.2, 0.25,	
		0.26, 0.32, 2 x <0.5,	
		0.46, 0.47, 0.68 mg/kg	
		AMPA: $27 \times < 0.05$, $6 \times < 0.1$, 0.13 mg/kg	
		GR: 2 trials, 4.8, 9.6 kg as/ha, PHI: 7, 14, 21 d;	
		Glyphosate: 2 x <0.05 mg/kg	
		PT: 4 trials, 1 x 3.5 - 3.75 kg as/ha, PHI: 28 d;	
		Glyphosate: all <0.05 mg/kg	
	0.5	US: 1 trial, 1 x 8.97 kg as/ha, PHI: 7 d;	
		Glyphosate: 0.16 mg/kg	
		AMPA: <0.05 mg/kg	
		Glyphosate: orange and tangerine:	
	_	$R_{max} = 0.45 \text{ mg/kg}$, $R_{ber} = 0.27 \text{ mg/kg}$, STMR = 0.05 mg/kg	

Groups of products	CODEX	Existing	MRL	Comments	
	IAINE	EQ MINE	pioposai		
Others			0.1		
1.2 Tree nuts Almonds	none	0.1*	0.1*	cGAP: ES, IT; 4.32 kg as/ha, ground treatment, PHI: US: 12 trials, 2 x 4.48 - 1 x 8.96 kg as/ha, PHI: 20 d; Glyphosate: all <0.05 mg/kg	
Haselnuts				. 1 × 0.72 sate:	±1
Pecans				AMPA: all <0.05 mg/kg US: 10 trials, 2 x 4.48 - 1 x 8.96 kg as/ha, PHI: 20 d; Glyphosate: all <0.05 mg/kg	
Walnuts				US: 8 trials, 2 × 4.48 - 1 × 8.96 kg as/ha, PHI: 20 d; Glyphosate: all <0.05 mg/kg	
1.3. Pome fruit Apples	noue	* 1.0	*1.0	cGAP: N-EU and S-EU; 4.32 kg as/ha, ground treatment, PHI: 7 d. DE: 12 trials, 1.8 or 3.6 kg as/ha, PHI: 50, 56 d 7 trials, 2.4 kg as/ha, PHI: 0 - 42 d Glyphosate: all <0.05 mg/kg AMPA: 12 x <0.05 mg/kg AMPA: all <0.05 mg/kg	11; 7 d.
	Í	1000		AMPA: <0.05 mg/kg	

Groups of products	CODEX	Existing	MRL	Comments	nts
	MRL	EU MRL	proposal		
				N-FR:	1 trial, 3.6 kg as/ha, PHI: 26 d
					Glyphosate: <0.05 mg/kg
					AMPA: <0.05 mg/kg
				S-FR:	8 trials, 4.32 - 9.0 kg as/ha, PHI: 26 - 47d
					Glyphosate: all <0.05 mg/kg
					AMPA: all <0.05 mg/kg
				PT:	4 trials, 3.4 - 3.7 kg as/ha, PHI: 28, 45 d
					Glyphosate: all <0.03 mg/kg
				US:	18 trials, 2 x 4.48 - 1 x 8.96 kg as/ha, PHI: 13d
					Glyphosate: all <0.05 mg/kg
					AMPA: -
Pears				DE:	2 trials, 2.4 kg as/ha, PHI: 0 - 42 d
					Glyphosate: all <0.05 mg/kg
					AMPA: -
				S-FR:	3 trials, 4.32 - 11.7 kg as/ha, PHI: 32, 40 d
					Glyphosate: all <0.05 mg/kg
					AMPA: all <0.05 mg/kg
				US:	12 trials, 2 x 4.48 or 1 x 8.96 kg as/ha, PHI: 13d
					Glyphosate: all <0.05 mg/kg
					AMPA: -
1.4. Stone fruit	none	0.1*	0.1*	cGAP:	N-EU andS-EU; 4.32 kg as/ha, ground treatment, PHI: 7 d.
Apricots				NS:	1 trial, 4.48 kg as/ha, PHI: 30 d
					Glyphosate: <0.05 mg/kg
					AMPA: <0.05 mg/kg
Cherries				DE:	2 trials, 4.2 - 4.4 kg as/ha, PHI: 13 - 14 d Glvphosate: all <0.05 mg/kg
	_	_	_	_	

	1000	FIIMBI	Labourer		
	MKL	100	proposal		
				AMPA: all <0.05 mg/kg	
				ES: 1 trial, 4.48 kg as/ha, PHI: 6 d	
				Glyphosate: <0.05 mg/kg	
				IT: 2 trials, 4.48 kg as/ha, PHI: 7 d	
				Glyphosate: all <0.05 mg/kg	
				S-FR: 1 trial, 4.48 kg as/ha, PHI: 7 d	
				Glyphosate: <0.05 mg/kg	
				AMPA: -	
				US: 10 trials, 2 x 4.48 - 1 x 8.96 kg as/ha, PHI: 10 - 13 d	P
				Glyphosate: all <0.05 mg/kg	
				AMPA: all <0.05 mg/kg	
				2 trials, 3 x 3.74 - 4.48 kg as/ha, PHI: 17 - 37 d	
				Glyphosate: <0.05, 0.08 mg/kg	
				AMPA: all <0.05 mg/kg	
				CA: 4 trials, 2 x 5.04 kg as/ha, PHI: 10 - 26 d	
				Glyphosate: $2 \times < 0.05, 0.05, 0.09 \text{ mg/kg}$	
				AMPA: all <0.05 mg/kg	
Peaches				ES: 2 trials, 4.5 kg as/ha, PHI: 7 d	
				Glyphosate: all <0.05 mg/kg	
				AMPA: all <0.05 mg/kg	
				US: 18 trials, 3 x 3.36 - 2 x 4.48, 1 x 8.96 kg as/ha, PHI: 3, 13, 30, 31 d	II: 3, 13, 30, 31 d
				Glyphosate: 16 x <0.05, 0.05, 0.1 mg/kg	
Nectarines				US: 1 trial, 3 x 4.48 kg as/ha, PHI: 30 d	
				Glyphosate: 0.05 mg/kg	
				AMPA: <0.05 mg/kg	

Reasoned Opinion – Glyphosate MRL Review 2018 - Monsanto Comments

Groups of products	CODEX	Existing	MRL	Comments	ts
4	MRL	EU MRL	proposal		
Plums				US: 1	15 trials, 2-3 x 4.48, 1 x 8.96 kg as/ha, PHI: 13, 31 d
					Glyphosate: all <0.05 mg/kg
				_	AMPA: all <0.05 mg/kg
				CA:	4 trials, 3 x 3.36 kg as/ha, PHI: 17 d
				_	Glyphosate: 0.1, 0.12, 0.13, 0.16 mg/kg
				۹ 	AMPA: all <0.05 mg/kg
				<u>م</u>	All fruit types:
				<u></u>	$R_{max} = 0.14 \text{ mg/kg}$, $R_{ber} = 0.17 \text{ mg/kg}$, STMR = 0.05 mg/kg
1.5 Berries and small fruit					
Grapes	none	0.1*	0.5	cGAP: AT:	.T: 4.32 kg as/ha, ground treatment, PHI: 14 d.
				S	S-EU: 4.32 kg as/ha, ground treatment, PHI: 28 d.
				DE: 1	10 trials, 0.72 - 2.4 kg as/ha, PHI: 0 - 4 d
				_	Glynhosate: 13 x <0.05 mg/kg and 0.7 mg/kg (low hanging
				fruits)	
				_	AMPA: all <0.05 mg/kg
				ES: 2	2 trials, 0.72 kg as/ha, PHI: 0 - 8 d
					Glyphosate: $3 \times <0.05 \text{ mg/kg (middle hanging fruits)}$
					and 0.2, 0.3 mg/kg (low and middle hanging
				fruits)	
				_	AMPA: all <0.05 mg/kg
				GR: 2	2 trials, 4.8 - 9.6 kg as/ha, PHI: 7 d
					Glyphosate: all <0.05 mg/kg
				_	AMPA: all <0.05 mg/kg
				US: 4	40 trials, 4.48 - 8.96 kg as/ha, PHI: 13 - 31 d
					Glyphosate: $22 \times <0.05$, $17 \times <0.1$, 0.2 mg/kg
				_	AMPA: all <0.05 mg/kg
	_	-	_	_	

		Sunga.	THE STATE OF THE S		
	MRL	EU MRL	proposal		
				R _{max} = 0.46 mg/kg, R _{ber} = 0.10 mg/kg, STMR = 0.05 mg/kg	
Currant like berries	none	0.1*	0.1*	cGAP: DE: 1.8 kg as/ha, ground treatment, PHI: 42 d.	
			ı	s on curra	
				Glyphosate: all <0.05 mg/kg AMPA: all <0.05 mg/kg	
Other berries and small fruit		0.1*	0.1*		
1.6 Miscellaneous fruit	5		*	ACAD: C Ell anh. A 22 for action around transfer and Dill. 20 d	
Dallalla	<u> </u>		T.O	ES: 12 trials, 2.87 - 5.74 kg as/ha, PHI: 30, 70 d	
				AMPA: all <0.05 mg/kg	
Kiwi	0.1*		0.1*	cGAP: ES; 4.32 kg as/ha, ground treatment, PHI:	
				ž,	
				Glyphosate: all <0.05 mg/kg	
				AMPA: all <0.05 mg/kg	
Olives				cGAP: S-EU; 4.32 kg as/ha, ground treatment, PHI: 7 d.	
				N-EU: No GAP.	
Table olives	none	0.1*	0.1*	ES: 24 trials, 2.16 - 4.32 kg as/ha, PHI: 0 - 27 d (0 = day of application) MLL30469	MLL30469
			3	fruit samples from canopy:	MLL 30297

Reasoned Opinion – Glyphosate MRL Review 2018 - Monsanto Comments

Groups of products	CODEX	Existing	MRL	Comments	
	MRL	EU MRL	proposal		
				Glyphosate: all <0.05 mg/kg	A20-II
				AMPA: all <0.05 mg/kg	RIP 97-00243
				IT: 4 trials (2 with glyphosate trimesium), 1.44 - 5.9 kg as/ha, PHI: 7,	MLL 30319
				13 d	
				fruit samples from canopy:	
				Glyphosate: $2 \times < 0.05$, 0.06, 0.08 mg/kg	
				AMPA: 2 × <0.05 mg/kg	
				GR: 7 trials, 4.8 kg as/ha, PHI: 6 - 7 d	No reports on Greece
				fruit samples from canopy:	
				Glyphosate: 7 x <0.05 mg/kg	
				AMPA: -	
Olives for oil production	none	2	1	ES: 4 trials, 2.16 kg as/ha, PHI: 7 d	Spain and Italy see above
				groundlying fruit samples:	No reports for Greece
				Glyphosate: 2 x <0.1, 0.5, 0.9 mg/kg	
				AMPA: all <0.05 mg/kg	
				GR: 7 trials (with glyphosate trimesium), 4.8 kg as/ha, PHI: 6 - 7 d	
				groundlying fruit samples:	
				Glyphosate: 0.06, 0.11, 2 × 0.12, 0.14, 0.27, 0.39 mg/kg	
				AMPA: -	
				IT: 1 trial (with glyphosate trimesium), 4.8 kg as/ha, PHI: 7 d	
				groundlying fruit sample:	
				Glyphosate: 0.23 mg/kg	
				AMPA: -	
				$R_{max} = 0.92 \text{ mg/kg}$, $R_{ber} = 0.52 \text{ mg/kg}$, STMR = 0.13 mg/kg	
Others		0.1*	0.1*		

2. Vegetables none 0.1* 0.1* 2.1 Root and tuber vegetables none 0.1* 0.1* Beetroot, vegetables cGAP: 1T.4.32 kg as/ha in carrots, wiping, PHI: N-EU: 1.44 kg as/ha, pre-emergence, PHI: Carrots, Withoof (Chicory) HR: 12 trials on carrots (pre-plant spraying), 1.44 - 8.64 kg as/ha, PHI: Mithoof (Chicory) 100 - 140 d 100 - 140 d 100 to 140 d 100 - 140 d 100 to 140 d 100 to 12 and leaves: Glyphosate: all < 0.05 mg/kg AMPA: all < 0.05 mg/kg 106 d A trials on swedes (pre-plant spraying), 2.16 kg as/ha, PHI: 89 - 100 to 3 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg ANPA: all < 0.05 mg/kg The chosen < 6AP in In Italy is considered to cause a low residue situation in root vegetables because treated plants will be damaged and would not be suitable to harvest. Therefore, no special data according to this GAP from southern EU region are considered necessary. All available data can be used for the MRL proposal of the whole group.	Groups of products	CODEX	Existing EU MRL	MRL	Comments	
CGAP: FR: 101 - 14 106 d CGAP: 106 d CGAP: 107 - 14 108 d CGAP: 108 d CGAP: 108 d CGAP: 109 - 22 199 - 22 199 - 22 199 - 22 199 - 22 The cho root veg be suita from so be used	2. Vegetables					
CGAP: FR: 101 - 14 106 d 106 d 109 - 22 199 - 22 199 - 22 The cho root veg be suita from so be used	2.1 Root and tuber vegetables	none	0.1*	0.1*		
FR: 101 - 14 101 - 14 106 d 106 d 109 - 22 199 -	Beetroot,					
FR: 101 - 14 101 - 14 101 - 14 106 d 106 d 106 d 106 d 106 d 106 d 107 +	Carrots,				N-EU: 1.44 kg as/ha, pre-emergence, PHI:	
none 0.1* 0.1*	Witloof (Chicory)					
none 0.1* 0.1*					101 - 140 d	
none 0.1* 0.1*					<u>roots:</u>	
none 0.1* 0.1*						
none 0.1* 0.1*						
none 0.1* 0.1*						
none 0.1* 0.1*						
none 0.1* 0.1*					roots and leaves:	
none 0.1*						
none 0.1* 0.1*						
none 0.1*						
none 0.1* 0.1*		_			199 - 229 d	
none 0.1* 0.1*					roots and leaves:	
none 0.1* 0.1*		7				
none 0.1* 0.1*						
none 0.1* 0.1*					The chosen cGAP in Italy is considered to cause a low residue situation in	
none 0.1* 0.1*					root vegetables because treated plants will be damaged and would not	
none 0.1* 0.1*					be suitable to harvest. Therefore, no special data according to this GAP	
none 0.1* 0.1*					from southern EU region are considered necessary. All available data can	
none 0.1* 0.1*					be used for the MRL proposal of the whole group.	
	2.2 Bulb vegetables	none	0.1*	0.1*		
Onions	Onions				rGAP: N-FII only: 2 1 kg as/ha pre-plant spraying PHI: -	

getables none 0.1* 0.1* getables none 0.1* 0.1* getables none 0.1* 0.1*	Groups of products	CODEX	Existing	MRL	Comments
none 0.1* 0.1* none 0.1*		MINE	EO ININE	psodoid	
none 0.1* 0.1* none 0.1*					
none 0.1* 0.1* none 0.1*					
none 0.1* 0.1* none 0.1* 0.1*					
none 0.1* 0.1* none 0.1*					
none 0.1* 0.1* none 0.1* 0.1*					
none 0.1* 0.1* none 0.1* 0.1*					
none 0.1* 0.1*	2.3 Fruiting vegetables	auou	*10	0.1*	
none 0.1* 0.1*	Cucumber		!	!	cGAP: DE only: 2.88 kg as/ha. post-emergence spraving between rows
none 0.1* 0.1*	Melones,				with shelding, PHI: -:
none 0.1* 0.1*	Courgettes				No residue data necessary, no residue situation.
none 0.1* 0.1*	(cultivation on plastic mulch)				
none 0.1* 0.1*	2.4 Brassica vegetables	none	0.1*	0.1*	
none 0.1* 0.1*				}	rGAP. No snecial GAP for brassica vegetables. However, seed bed
none 0.1* 0.1*					and the control of th
none 0.1* 0.1*					preparation (pre-plant) ground treatment) for vegetables and other crops
none 0.1* 0.1*					at rates up to 4.32 kg as/ha possible.
none 0.1* 0.1*					
none 0.1* 0.1*					leaves:
none 0.1* 0.1*					
none 0.1* 0.1*					
none 0.1* 0.1*					
none 0.1* 0.1*					leaves:
none 0.1* 0.1*					
none 0.1* 0.1*		7.00			
none 0.1* 0.1*		X78			
	2.5 Leaf vegetables and	none	0.1*	0.1*	cGAP: No special GAP for leaf vegetables and fresh herbs. However,
	fresh herbs				seed bed preparation (pre-plant ground treatment) for vegetables and

Groups of products	CODEX	Existing EU MRL	MRL	Comments
Lettuce				other crops at rates up to 4.32 kg as/ha possible. FR: 15 trials, 1.44 - 8.64 kg as/ha, PHI: 54 - 89 d Glyphosate: 10 x < 0.05, 4 x 0.05, 0.06 mg/kg AMPA: all < 0.05 mg/kg
2.6 Legume vegetables (fresh)	none	*1.0	0.1*	cGAP: No special GAP for legume vegetables. However, seed bed preparation (pre-plant ground treatment) for vegetables and other crops at rates up to 4.32 kg as/ha possible.
Asparagus	none	0.1*	0.1*	cGAP: IT: max. 4.32 kg as/ha, pre-emergence spraying, PHI: DE: 3.6 kg as/ha, spraying, PHI: DE: 1 trial, 1.8 kg as/ha, PHI: 1 - 21 d Glyphosate: 0.05 mg/kg / PHI: 1 d AMPA: all <0.05 mg/kg FR: 4 trials, 4.3 - 8.6 kg as/ha, PHI: 256 - 326 d Glyphosate: all <0.05 mg/kg AMPA: all <0.05 mg/kg / PHI: 2 d, 0.05 mg/kg / PHI: 6 d;
		8 2 1		AMPA: all <0.05 mg/kg 2 trials, 2 × 4.3 or 2 × 8.6 kg as/ha, PHI: 336 d Glyphosate: all <0.05 mg/kg AMPA: all <0.05 mg/kg

Reasoned Opinion – Glyphosate MRL Review 2018 - Monsanto Comments

Groune of producte	CODEX	Evicting	MPI	Comments	
	MRL	EU MIRL	proposal		
2.8 Fungi					
Mushrooms	none	0.1*	0.1*		
Wild mushrooms	none	20	20	cGAP: N-EU; 3.6 kg as/ha, forestry, PHI:	
				S-EU; 4.32 kg as/ha, forestry, PHI:	
				DE: 17 trials, 1.8 or 2.4 kg as/ha, PHI: 0 - 16 d	
				Glyphosate - PHI = $0 - 1 d$:	
				4.4, 6.41, 9.27, 13.0, 14.0, 14.71, 18.5, 21.91, 24.2, 27.0,	
				28.0, 31.15, 34.0, 34.17, 40.65, 43.6 mg/kg	
				PHI = 2 - 10 d:	
				0.19, 0.26, 0.27, 0.3, 0.32, 0.74, 1.0, 1.1, 1.2, 1.39, 1.46,	
				2.69, 3.5, 3.5, 4.26, 5.2, 5.5, 5.5, 8.5, 10.4, 29.4 mg/kg	
				PHI = 12 - 16 d:	
				<0.05, 0.05, 0.07, 0.08, 0.17, 0.19, 0.2, 0.25, 0.97, 1.0, 3,	
				2.2, 3.1, 12.3, 56.0 mg/kg	
				R _{max} = 38.86 mg/kg, R _{ber} = 29.42 mg/kg, STMR = 3.50 mg/kg	
				AMPA: PHI = 0 - 14 d:	
				9 x <0.05, 2 x 0.05, 0.06, 0.07, 0.08, 0.1, 0.25, 0.4, 0.44,	
				0.48, 0.5, 0.77 mg/kg	
3. Pulses					
Beans	7	2	2	cGAP: N-EU: 2.16 kg as/ha, PHI: 7 d.	Only for UK
				IT: 4.32 kg as/ha, wiping, PHI:	No data for Southern Europe
				N-EU: 40 trials, 0.72 - 2.88 kg as/ha, PHI: 7 - 10 d	
				Glyphosate: $10 \times < 0.05, 0.05, 0.07, 0.08, 2 \times 0.09, 5 \times 0.1, 2 \times 0.00, 0.00$	
				0.13, 0.14, 0.15, 0.15, 0.16, 0.18, 4 x 0.2, 0.21, 2 x 0.23,	
				2 x 0.3, 0.33, 0.5, 0.53, 0.8,	
				1.8 mg/kg	
			_	$R_{max} = 0.85 \text{ mg/kg}$, $R_{ber} = 0.42 \text{ mg/kg}$, STMR = 0.12 mg/kg	

	MRL	Existing EU MRL	MRL	Comments	
				AMPA: 27 x <0.05 mg/kg	
Peas	5	ю	10	.U: 2.16 kg as/ha, PHI: 7 d.	Only for Northern Europe
				II: 4.32 kg as/na, wiping, PHI: N-EU: 63 trials, 0.72 - 2.88 kg as/ha, PHI: 5 - 14 d	
				$6 \times <0.05$, 5×0.06 , 0.08 , <0.1 , 5×0.1 , 0.12 , 0.13 , 0.14 ,	
				$0.17, 0.18, 0.19, 4 \times 0.2,$ $0.22, 0.23, 3 \times 0.3, 0.33, 2 \times 0.4,$	
				0.43, 3 x 0.5, 0.5, 0.7, 3 x 0.8, 0.9, 1.1, 2 x 1.2, 1.2, 1.4, 1.5, 2 x 1.7,	
				1.8, 1.9, 2.1, 2.4, 2.5, 6.9, 7.62, 8.0, 8.3, 35 (maybe outlier) mg/kg	
				R _{max} = 11 mg/kg, R _{ber} = 2.4 mg/kg, STMR = 0.30 mg/kg	
				R _{max} = 4.835 mg/kg, R _{ber} = 2.25 mg/kg, STMR = 0.30 mg/kg	
				(without 35 mg/kg)	
				AMPA: 0.11, 32 x <0.05 mg/kg	
Lupines			10	No residue data available.	
				The extrapolation document allows extrapolation from beans and/or	
				peas to the whole group. According to the information available time of	
				sowing, yield/ha and ratio of straw and seeds of peas and lupines are	
				comparable.	
	_			MRL proposal is based on data generated in peas as lupines are more like	
				a pea than a bean.	
Others	none	0.1*	0.1*		
4. Oil seeds					
Linseed	none	10	10	cGAP: DE, UK: 1.44 kg as/ha, PHI: 14 d.	
		1			
	E200000			GB: 6 trials, 0.72 - 2.88 kg as/ha, PHI: 5 - 7 d	

h shell) none 20 GGAP: 10 10 10 GGAP: mg/kg (label) none 3 x 0.23 3 x 0.23 0.48,4 > 0.63,0.6 0.88,2 > 2.07,2.3 3.20,3.5	Groups of products	CODEX	Existing	MRL	Comments
Glyphos Rmax = 7 AMPA: ANPE: HU: 8 trials, Glyphos Mg/kg (PH: 7-1) Rmax = 1 S-EU: N-EU: 161 tria as/ha, PHI: 7 - 2 Glyphos 3 x 0.23, 0.26, 2 0.48, 4 x 0.50, 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 0 1.57, 1.60, 1.64, 2.07, 2.11, 2.34, 3 3.20, 3.20, 3.20, 3 x 3 4.00, 4.5		MRL	EU MRL	proposal	
AMPA: none 20					Glyphosate: 1.27, 1.29, 1.9, 2.23, 3.97, 4.6 mg/kg
AMPA: none 20 CGAP: HU: N-EU: HU: 8 trials, Glyphos mg/kg (PHI: 7-1) R _{max} = 1. N-EU: S-EU: N-EU: Glyphos 3 x 0.23, 0.26, 2 Glyphos 0.63, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 0 1.57, 1.60, 1.64, 2.07, 2.11, 2.34, 4.00, 4.5.					Mmax = 7.70 IIIB/ NB, Nber = 0.20 IIIB/ NB, 3119IN = 2.07 IIIB/ NB
20 CGAP: HU: N-EU: HU: 8 trials, Glyphos mg/kg (PHI: 7-1, R _{max} = 1, R _{max} = 1, 10 10 10 CGAP: Non tolk N-EU: S-EU: S-EU: N-EU: 161 tria as/ha, PHI: 7 - 2 Glyphos 3 x 0.23, 0.26, 2 0.63, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 3 3.20, 3.20, 3 x 3 4.00, 4.5					
10 10 10 GAP: N-EU: HU: 8 trials, Glyphos mg/kg (PHI: 7-1- R _{max} = 1- R _{max} = 1- R _{max} = 1- S-EU: S-EU: S-EU: Glyphos 3 x 0.23, 0.26, 2 Glyphos 3 x 0.23, 0.26, 3 x 0 0.63, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 3 x 3 x 3 x 20, 3 x 3 x 4.00, 4 x.	(II o do dejim) book according to	9		,	÷
N-EU:	onillower seed (with silen)	פוע		70	. i
HU: 8 trials, Glyphos mg/kg (PHI: 7-1) 10					N-EU: No GAP.
Glyphos mg/kg (PHI: 7-1) R _{max} = 1.0 10 10 10 CGAP: Non tolk N-EU: S-EU: N-EU: 161 tria as/ha, PHI: 7 - 2 Glyphos 3 x 0.23, 0.26, 2 Glyphos 3 x 0.23, 0.26, 2 0.48, 4 x 0.50, 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 0 1.57, 1.60, 1.64, 2.07, 2.11, 2.34, 3.20, 3.20, 3.3 4.00, 4.5					
10 10 10 cGAP: Non tole N-EU: S-EU: N-EU: Glyphos 3 x 0.23, 0.26, 2 Glyphos 3 x 0.23, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 0 1.57, 1.60, 1.64, 2.07, 2.11, 2.34, 3.20, 3.20, 3.20, 3.38					
10 10 cGAP: Non tole N-EU: S-EU: S-EU: N-EU: 161 tria as/ha, PHI: 7 - 2 Glyphos 3 x 0.23, 0.26, 2 Glyphos 0.63, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 0 1.57, 1.60, 1.64, 2.07, 2.11, 2.34, 3.20, 3.20, 3 x 3 4.00, 4.5					
10 10 cGAP: Non tolk N-EU: S-EU: N-EU: 161 tria as/ha, PHI: 7 - 2 Glyphos 3 x 0.23, 0.26, 2 3 x 0.23, 0.26, 3 0.63, 0.65, 3 x 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 0 0.88, 2 x 0.90, 0 1.57, 1.60, 1.64, 2.07, 2.11, 2.34, 3.20, 3.20, 3 x 3 4.00, 4.5					R _{max} = 14.96 mg/kg. R _{her} = 7.58 mg/kg. STMR = 1.13 mg/kg
10 10 cGAP: Non tole N-EU: S-EU: N-EU: 161 tria as/ha, PHI: 7 - 2 Glyphos 3 x 0.23, 0.26, 2 3 x 0.23, 0.26, 2 0.48, 4 x 0.50, 0 0.63, 0.65, 3 x 0 0.88, 2 x 0.90, 0 0.88, 2 x 0.90, 0 1.57, 1.60, 1.64, 2.07, 2.11, 2.34, 3.20, 3.20, 3 x 3 4.00, 4.5.					
N-EU: 2.01 kg as/ha, PHI: 10 - 14 d. S-EU: 2.01 kg as/ha, pre-emergence, PHI: N-EU: 161 trials on glyphosate non tolerant oilseed rabe, 0.72 - 2.94 kg as/ha, PHI: 7 - 21 d Glyphosate: 0.06, 0.08, 2 x 0.10, 0.12, 0.14, 0.15, 0.16, 4 x 0.20, 0.21, 3 x 0.23, 0.26, 2 x 0.30, 33, 2 x 0.35, 11 x 0.40, 0.43, 0.45, 0.46, 3 x 0.23, 0.26, 2 x 0.30, 33, 2 x 0.35, 11 x 0.40, 0.43, 0.45, 0.46, 0.48, 4 x 0.50, 0.51, 0.54, 0.55, 0.55, 0.57, 12 x 0.60, 0.63, 0.65, 3 x 0.70, 0.73, 0.78, 5 x 0.80, 0.82, 0.86, 0.87, 0.88, 2 x 0.90, 0.93, 2 x 0.95, 0.95, 2 x 0.98, 1.00, 1.05, 1.08, 2 x 1.10, 5 x 1.30, 4 x 1.40, 1.43, 1.48, 2 x 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 x 1.80, 1.85, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 2.79, 2 x 6.30, 6.53, 8.40, 2 x 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 x 6.30, 6.53, 8.40, 2 x	Rape seed	10	10	10	cGAP: Non tolerant oilseed rape:
S-EU: 2.01 kg as/ha, pre-emergence, PHI: N-EU: 161 trials on glyphosate non tolerant oilseed rape, 0.72 - 2.94 kg as/ha, PHI: 7 - 21 d Glyphosate: 0.06, 0.08, 2 × 0.10, 0.12, 0.14, 0.15, 0.16, 4 × 0.20, 0.21, 3 × 0.23, 0.26, 2 × 0.30, 33, 2 × 0.35, 11 × 0.40, 0.43, 0.45, 0.46, 0.48, 4 × 0.50, 0.51, 0.54, 0.55, 0.55, 0.57, 12 × 0.60, 0.63, 0.65, 3 × 0.70, 0.73, 0.78, 5 × 0.80, 0.82, 0.86, 0.87, 0.88, 2 × 0.90, 0.93, 2 × 0.95, 0.96, 2 × 0.98, 1.00, 1.05, 1.08, 2 × 1.10, 5 × 1.20, 1.23, 5 × 1.30, 4 × 1.40, 1.43, 1.48, 2 × 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 × 1.80, 1.85, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.70, 2.74, 2.80, 3.74, 3.98, 3.20, 3.320, 3 × 3.28, 3.40, 3 × 3.50, 3.60, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 × 6.30, 6.53, 8.40, 2 ×					N-EU: 2.01 kg as/ha, PHI: 10 - 14 d.
N-EU: 161 trials on glyphosate non tolerant oilseed rape, 0.72 - 2.94 kg as/ha, PHI: 7 - 21d Glyphosate:					S-EU: 2.01 kg as/ha. pre-emergence. PHI:
N-EU: 151 trials on glyphosate non tolerant oilseed rape, 0.72 - 2.94 kg as/ha, PHI: 7 - 21 d Glyphosate: 0.06, 0.08, 2 × 0.10, 0.12, 0.14, 0.15, 0.16, 4 × 0.20, 0.21, 3 × 0.23, 0.26, 2 × 0.30, 3 × 0.32, 0.33, 2 × 0.35, 11 × 0.40, 0.43, 0.45, 0.46, 0.48, 4 × 0.50, 0.51, 0.54, 0.63, 0.65, 3 × 0.70, 0.73, 0.78, 5 × 0.80, 0.82, 0.86, 0.87, 0.63, 0.65, 3 × 0.70, 0.73, 0.78, 5 × 0.80, 0.82, 0.86, 0.88, 2 × 0.90, 0.93, 2 × 0.95, 0.96, 2 × 0.98, 1.00, 1.05, 1.08, 2 × 1.10, 5 × 1.20, 1.23, 5 × 1.30, 4 × 1.40, 1.43, 1.48, 2 × 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 × 1.80, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 3.20, 3.24, 3.38, 3.40, 3 × 3.56, 5.73, 2 × 6.30, 6.53, 8.40, 2 ×					
as/ha, PHI: 7 - 21 d Glyphosate:					N-EU: 161 trials on glyphosate non tolerant oilseed rape, 0.72 - 2.94 kg
Glyphosate: 0.06, 0.08, 2 × 0.10, 0.12, 0.14, 0.15, 0.16, 4 × 0.20, 0.21, 3 × 0.23, 0.26, 2 × 0.30, 3 × 0.32, 0.33, 2 × 0.35, 11 × 0.40, 0.43, 0.45, 0.46, 0.48, 4 × 0.50, 0.51, 0.54, 0.63, 0.65, 3 × 0.70, 0.73, 0.78, 5 × 0.80, 0.82, 0.86, 0.63, 0.65, 3 × 0.70, 0.73, 0.78, 5 × 0.80, 0.82, 0.86, 0.88, 2 × 0.90, 0.93, 2 × 0.95, 0.96, 2 × 0.98, 1.00, 1.05, 1.08, 2 × 1.10, 5 × 1.20, 1.23, 5 × 1.30, 4 × 1.40, 1.43, 1.48, 2 × 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 × 1.80, 1.85, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 3.70, 3.74, 3.98, 3.20, 3.20, 3 × 3.28, 3.40, 3 × 3.50, 3.60, 3.70, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 × 6.30, 6.53, 8.40, 2 ×					as/ha, PHI: 7 - 21 d
0.06, 0.08, 2 x 0.10, 0.12, 0.14, 0.15, 0.16, 4 x 0.20, 0.21, 3 x 0.23, 0.26, 2 x 0.30, 3 x 0.32, 0.33, 2 x 0.35, 11 x 0.40, 0.43, 0.45, 0.46, 0.48, 4 x 0.50, 0.51, 0.54, 0.63, 0.65, 3 x 0.70, 0.73, 0.78, 5 x 0.80, 0.82, 0.87, 0.63, 0.65, 3 x 0.70, 0.73, 0.78, 5 x 0.80, 0.82, 0.87, 0.88, 2 x 0.90, 0.93, 2 x 0.95, 0.96, 2 x 0.98, 1.00, 1.05, 1.08, 2 x 1.10, 5 x 1.20, 1.23, 5 x 1.30, 4 x 1.40, 1.43, 1.48, 2 x 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 x 1.80, 1.85, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 3.20, 3.20, 3 x 3.28, 3.40, 3 x 3.50, 3.60, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 x 6.30, 6.53, 8.40, 2 x			-61		Glyphosate:
3 x 0.23, 0.26, 2 x 0.30, 3 x 0.32, 0.33, 2 x 0.35, 11 x 0.40, 0.43, 0.45, 0.46, 0.48, 4 x 0.50, 0.51, 0.54, 0.63, 0.65, 3 x 0.70, 0.73, 0.78, 5 x 0.80, 0.82, 0.86, 0.88, 2 x 0.90, 0.93, 2 x 0.95, 0.96, 2 x 0.98, 1.00, 1.05, 1.08, 2 x 1.10, 5 x 1.20, 1.23, 5 x 1.30, 4 x 1.40, 1.43, 1.48, 2 x 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 3.20, 3.20, 3 x 3.28, 3.40, 3 x 3.50, 3.60, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 x 6.30, 6.53, 8.40, 2 x					$0.06, 0.08, 2 \times 0.10, 0.12, 0.14, 0.15, 0.16, 4 \times 0.20, 0.21,$
3 x 0.32, 0.33, 2 x 0.35, 11 x 0.40, 0.45, 0.46, 0.48, 4 x 0.50, 0.51, 0.54, 0.55, 0.55, 0.57, 12 x 0.60, 0.63, 0.65, 3 x 0.70, 0.73, 0.78, 5 x 0.80, 0.82, 0.86, 0.87, 0.88, 2 x 0.90, 0.93, 2 x 0.95, 0.96, 2 x 0.98, 1.00, 1.05, 1.08, 2 x 1.10, 5 x 1.20, 1.23, 5 x 1.30, 4 x 1.40, 1.43, 1.48, 2 x 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 x 1.80, 1.85, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 2.90, 3.04, 3.10, 3.19, 3.20, 3.20, 3.20, 3 x 3.28, 3.40, 3 x 3.50, 3.60, 3.70, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 x 6.30, 6.53, 8.40, 2 x					3 x 0.23, 0.26, 2 x 0.30,
0.48, 4 × 0.50, 0.51, 0.54, 0.55, 0.55, 0.57, 12 × 0.60, 0.63, 0.65, 3 × 0.70, 0.73, 0.78, 5 × 0.80, 0.82, 0.86, 0.87, 0.88, 2 × 0.90, 0.93, 2 × 0.95, 0.96, 2 × 0.98, 1.00, 1.05, 1.08, 2 × 1.10, 5 × 1.20, 1.23, 5 × 1.30, 4 × 1.40, 1.43, 1.48, 2 × 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 × 1.80, 1.85, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 2.90, 3.70, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 × 6.30, 6.53, 8.40, 2 × 1.80, 2.80,					
0.63, 0.65, 3 × 0.70, 0.73, 0.78, 5 × 0.86, 0.87, 0.88, 2 × 0.90, 0.93, 2 × 0.95, 0.96, 2 × 0.98, 1.00, 1.05, 1.08, 2 × 1.10, 5 × 1.20, 1.23, 5 × 1.30, 4 × 1.40, 1.43, 1.48, 2 × 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 × 1.80, 1.85, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 2.90, 3.04, 3.10, 3.19, 3.20, 3.20, 3 × 3.28, 3.40, 3 × 3.50, 3.60, 3.70, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 × 6.30, 6.53, 8.40, 2 ×					0.55, 0.55, 0.57,
0.88, 2 × 0.90, 0.93, 2 × 0.96, 2 × 0.98, 1.00, 1.05, 1.08, 2 × 1.10, 5 × 1.20, 1.23, 5 × 1.30, 4 × 1.40, 1.43, 1.48, 2 × 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 3.20, 3.20, 3 × 3.28, 3.40, 3 × 3.50, 3.60, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 × 6.30, 6.53, 8.40, 2 ×					0.78, 5 x 0.80, 0.82, 0.86,
5 × 1.20, 1.23, 5 × 1.40, 1.43, 1.48, 2 × 1.50, 1.52, 1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 × 1.80, 1.85, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 2.90, 3.04, 3.10, 3.19, 3.20, 3.20, 3 × 3.28, 3.40, 3 × 3.50, 3.60, 3.70, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 × 6.30, 6.53, 8.40, 2 ×					$0.88, 2 \times 0.90, 0.93, 2 \times 0.95, 0.96, 2 \times 0.98, 1.00, 1.05, 1.08, 2 \times 1.10,$
1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 x 1.80, 1.85, 1.92, 1.99, 2.00, 2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 2.90, 3.04, 3.10, 3.19, 3.20, 3.20, 3 x 3.28, 3.40, 3 x 3.50, 3.60, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 x 6.30, 6.53, 8.40, 2 x					5 x 1.20, 1.23, 5 x 1.30, 4 x 1.40, 1.43, 1.48, 2 x 1.50, 1.52,
2.07, 2.11, 2.34, 2.40, 2.70, 2.74, 2.80, 2.90, 3.04, 3.10, 3.19, 3.20, 3.20, 3.3, 3.28, 3.40, 3.3, 3.50, 3.60, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2.x 6.30, 6.53, 8.40, 2.x					1.57, 1.60, 1.64, 1.70, 1.78, 1.83, 2 x 1.80, 1.85, 1.92, 1.99, 2.00,
3.20, 3.28, 3.40, 3×3.50, 3.60, 3.70, 3.74, 3.98, 4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2×6.30, 6.53, 8.40, 2×					
4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 x 6.30, 6.53, 8.40, 2 x					-~
					$4.00, 4.11, 4.40, 4.65, 5.41, 5.56, 5.73, 2 \times 6.30, 6.53, 8.40, 2 \times$

Groups of products	CODEX	Existing EU MRL	MRL	Comments	
				8.60, 10.00, 11.60 mg/kg	
				$R_{max} = 5.51 \text{ mg/kg}$, $R_{ber} = 3.99 \text{ mg/kg}$, STMR = 0.95 mg/kg	
				AMPA:	
				0.08, 0.09, 0.1, 0.13, 0.15, all other <0.05 mg/kg	
				N-EU: 29 trials on glyphosate tolerant oilseed rape, 0.9 - 1.44 kg as/ha,	
				PHI: 69 - 163 d	
				Glyphosate: 28 x <0.05 or <0.02, 0.08 mg/kg AMPA: 17 x<0.05 or <0.02 2 x 0.06 0.09 2 x 0.1 3 x 0.2	
				0.5 mg/kg	
				Glyphosate + AMPA:	
				17 x<0.05 or <0.02, 0.09, 2 x 0.1, 2 x 0.2, 2 x 0.3,	
				$0.4, 2 \times 0.5, 0.6,$	
				0.8 mg/kg	
				According to the results of trials with and the action of the results of	
				According to the results of thats with non-tolerant onseed rape a lyikk of	
				TO MB/ kg is proposed. This covers also the use in tolerant oilseed rape, if	
				applied according to the GAP given.	
				This proposal is in line with the Codex MRL.	
				Since the commercial commodity of oilseed rape contains both the CP4	
				EPSPS enzyme and the GOX gene there is a difference in the residue	
				behaviour of glyphosate within the tolerant and non tolerant rape plant.	
				Because GOX accelerates the formation of AMPA this metabolite appears	
				at higher levels than in glyphosate non tolerant rape plant parts.	
		The same		Therefore, AMPA should be included in the residue definition for oilseed	
				rape for enforcement nurnose and for risk assessment	

Groups of products	CODEX	Existing E11 MB1	MRL	Comments	
	THE STATE OF THE S	בס ואוצר	proposal		
Soybeans	20	20	20	cGAP: Tolerant soybeans:	France and Italy:
				N-EU and S-EU: 2 \times 1.08 kg as/ha, BBCH 19 at the latest, PHI:	MLL 30437
				cGAP: US: tolerant soybeans: 1 x ≤1.7 kg glyphosate/ha, PHI: 14 d.	MLL 30438
				(request for import tolerance)	MLL 30435
				N-EU and S-EU: 1.44 kg as/ha, BBCH 19 at the latest, PHI:	MLL 30436
				US: $120 \text{ trials with 4 applications at rates of } 1 \times 6.38 \text{ (pre emergence)}$	MLL 30487
				and 3 x 0.84 kg as/ha	MLL 30488
				(PHI: 10 - 133 d).	
				Glyphosate:	
				$3 \times < 0.05, 0.05, 0.06, 0.07, 6 \times 0.1, 9 \times 0.2, 11 \times 0.3, 4 \times$	
				$0.4, 8 \times 0.5, 8 \times 0.6,$	
				$6 \times 0.7, 2 \times 0.9, 9 \times 1.0, 2 \times 1.1, 2 \times 1.3, 5 \times 1.4, 2 \times 1.5, 2$	
				1.6, 2 x 1.7,	
				4 x 1.8, 5 x 1.9, 3 x 2.0, 2.1, 5 x 2.3, 2 x 2.4, 2 x 2.6, 2 x 2.7,	
				2.8, 2.9, 2 x 3.0, 3.2, 3.3, 3.5, 3.6, 3.7, 4.4, 5.3, 5.6 mg/kg	
				2 X < 0.0.5, 2 X 0.05, 2 X 0.01, 5 X 0.1, 9 X 0.2, 8 X 0.5, 5 X	
				$0.4, 7 \times 0.5, 6 \times 0.6,$	
				4 x 0.7, 0.8, 2 x 0.9, 4 x 1.0, 5 x 1.1, 2 x 1.2, 3 x 1.3, 2 x 1.4,	
				2 x 1.5, 4 x 1.6,	
				4×1.7, 2×1.8, 4×1.9, 2×2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3×	
				2.6, 4 x 2.7, 2 x 2.8, 3 x 3.0, 3.1, 3.2, 2 x 3.3, 2 x 3.4, 3.5, 2 x	
				3.6, 2 x 3.9, 4.5, 4.6, 5.0, 5.4,	
				7.6 mg/kg.	
				Glyphosate + AMPA:	
				$<0.05, 0.06, 0.08, 2 \times 0.1, 0.2, 3 \times 0.3, 4 \times 0.4, 6 \times 0.5, 0.6,$	

Groups of products	CODEX	Existing	MRL	Comments
	MRL	EU MRL	proposal	
				0.7, 5 x 0.8, 4 x 0.9, 2 x 1.0, 2 x 1.1, 3 x 1.2, 2 x 1.3, 1.4, 3 x
	_			1.5, 3 x 1.6, 1.7, 1.8, 3 x 2.0, 2.1, 2.2, 2.3, 3 x 2.4, 2 x 2.5, 3 x
				2 x 3.6, 3 x
				x4.0, 2 x 4.2, 4.3, 4.5, 4.7, 3 x 4.9, 3 x 5.1, 5.4, 2 x 5.8, 2 x 5.9,
				2 x 6.2, 4 x 6.6, 6.7, 6.9, 7.1, 7.2, 7.3, 2 x 7.6, 2 x 7.9, 2 x
				8.2, 8.3, 8.5, 9.1, 9.6, 3 x 11, 17 mg/kg.
				No trial according to GAP.
				$R_{max} = 6.72 \text{ mg/kg}$, $R_{ber} = 10.65 \text{ mg/kg}$, STMR = 2.7 mg/kg
				GAP for tolerant soybeans: 1 x 1.122 kg glyphosate-trimesium/ha,
				PHI: 7 d.
				20 trials with 3 applications at rates of 4.03 (pre emergence), 1.61
				and 0.806 kg glyphosate-trimesium/ha (PHI: 7d).
				Glyphosate:
				0.26, 0.44, 0.54, 0.63, 0.73, 0.75, 0.81, 0.83, 0.98, 1.0,
				1.24, 1.68, 1.73, 2.42, 2.61, 2.81, 3.25, 3.62, 3.92, 6.73 mg/kg
				(PHI: 7 d).
				AMPA: -
				No trial according to GAP.
				$R_{max} = 5.71 \text{ mg/kg}$, $R_{ber} = 5.52 \text{ mg/kg}$, STMR = 1.12 mg/kg
				S-FR / IT: GAP for tolerant soybeans: 2 x 0.72 - 1.08 kg glyphosate/ha
				(max. 1.44 kg as/ha), PHI: F.
				28 trials with 2, 3 or 4 applications at rates of 0.72 and 1.08 each
				(flowering til mature)
				(PHI = 109 - 12 d).
				Glyphosate:
				3 × < 0.05 0.05 0.05 0 0.07 0 × 0.01 3 × 0.3 2 ×

Groups of products	CODEX	Fxicting	MRI	Comments
	MRL	EU MRL	proposal	
				0.4, 0.5, 3 x 0.6,
				2 x 0.7, 3 x 0.8, 2 x 0.9, 2 x 1.0, 2 x 1.1, 1.2, 1.4, 1.8 mg/kg.
				AMPA: $2 \times (0.05, 2 \times 0.05, 2 \times 0.06, 0.08, 0.09, 2 \times 0.2, 4 \times 0.4, 4 \times 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.$
				0.5, 3 × 0.6, 0.7,
				3 x 0.8, 3 x 0.9, 2 x 1.0, 2 x 1.1, 1.2, 1.3, 1.4, 1.7, 1.8, 2 x
				2.0, 2.5 mg/kg.
				Glyphosate + AMPA:
				0.09, 3×0.1 , 3×0.2 , 0.4, 3×0.8 , 1.1, 6×1.2 , 1.4, 1.5, 2×0.8
				1.6, 1.8, 1.9, 2.0,
				2 x 2.1, 2.3, 2.4, 2.5, 2.6, 2.8, 2.9, 3.0, 3.2, 3.5, 4.4, 4.6,
				4.8 mg/kg.
				R _{max} = 4.39 mg/kg, R _{ber} = 4.95 mg/kg, STMR = 1.45 mg/kg
				According to the results of trials with tolerant soybeans a MRL of 20
				mg/kg is proposed. This
				covers also the use in non-tolerant soybeans for dessiccation purpose
				close to harvest, if applied according to the GAP given.
				This proposal is in line with the Codex MRL which is acceptable. This
				proposal will cover uses of glyphosate in tolerant and non-tolerant
				soybeans in Europe and in the USA.
				Since glyphosate non tolerant soybeans itself as well as soybean plants
				containing CP4 EPSPS metabolise glyphosate to AMPA there is no
				difference in the residue behaviour of glyphosate in both kind of plants.
				However, AMPA reaches residue levels as high as glyphosate itself in
				soybean seeds this metabolite should be included in the residue
				definition for enforcement purpose and for risk assessment.
Mustard seed		10	10	cGAP: IE, UK: 1.44 kg as/ha, PHI: 8 d.

		EU MRL	proposal	
				S-EU: No GAP.
				GB: 4 trials, 1.44 - 2.88 kg as/ha, PHI: 7 - 8 d
				Glyphosate: 0.2, 0.5, 2.6, 3.2 mg/kg
Cotton seed				cGAP: ES: 1.8 kg as/ha, PHI: 7 d.
				N-EU: No GAP.
	56			ES: 24 trials on glyphosate non tolerant cotton, 1.34 - 1.65 kg as/ha, PHI: 6 - 9 d
				Glyphosate: 0.04, 0.05, 0.06, 2 × 0.07, 2 × 0.08, 0.10, 0.12, 2 ×
				1 mg/kg
				R _{max} = 0.46 mg/kg, R _{ber} = 0.52 mg/kg, STMR = 0.15 mg/kg
				AMPA: all <0.05 mg/kg
<u> </u>	0.5 (10,		10	US: (request for import tolerance)
0,	Step 3(a))			GAP: 1 x 1.68 kg as/ha, PHI: 7 d
				18 trials with 1, 2 or 4 applications and application rates at 4.48 -
				8.97 kg as/ha.
				The majority of trials were conducted with 1 application of 5.04
				kg as/ha;
				Glyphosate:
				0.15, 0.26, 0.27, 0.47, 0.49, 0.54, 0.63, 0.92, 1.48, 1.87,
				2, 2.15, 2.68
				<u>u</u>). No trial according to GAP.
				$R_{max} = 6.52 \text{ mg/kg}$, $R_{ber} = 5.79 \text{ mg/kg}$, STMR = 1.68 mg/kg

Reasoned Opinion – Glyphosate MRL Review 2018 - Monsanto Comments

Groups of products	CODEX	Existing EU MRL	MRL proposal	Comments
				<u>Glyphosate tolerant cotton</u>
				cGAP: S-EU:
				2×0.72 kg as/ha (before 4 leaf stage), 1×1.8 kg as/ha (8-10 leaf
				stage),
				1 x 1.8 kg as/ha (preharvest), PHI: 20 d
				Two ES trials not according to GAP.
				N-EU: No GAP.
				US (request for import tolerance):
	-			cGAP: 1 x 1.68 kg as/ha (4 leaf stage), 2 x 0.84 kg as/ha (12 leaf stage), 1
				x 1.68 kg as/ha (pre-harvest), PHI: 7 d
				48 results from 16 trials with different application rates (4-5
				applications, up to
				8.8 kg as/ha, PHI: 6-17 d);
				Glyphosate: 0.1, 3 x 0.3, 4 x 0.4, 6 x 0.5, 0.6, 3 x 0.7, 2 x 0.8,
				2 x 1.5, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2 x 2.5, 2.6, 2.9,
				2 x 3.0, 3.4, 4.0, 4.2, 4.4, 4.6, 4.9, 5.0, 5.2, 5.4, <u>6.4</u>
				mg/kg seeds.
				R _{max} = 5.47 mg/kg, R _{ber} = 5.95 mg/kg, STMR = 1.35
				mg/kg seeds.
				AMPA: $30 \times < 0.05$, 3×0.05 , 0.06 , 0.07 , 3×0.08 , 0.09 , 6×0.09
				$0.1, 3 \times 0.2 \text{ mg/kg}$
				$R_{max} = 0.15 \text{ mg/kg}$, $R_{ber} = 0.16 \text{ mg/kg}$, STMR = 0.05
		fa 🗆		mg/kg

Groups of products	CODEX	Existing	MRL	Comments		1
	MRL	EU MRL	proposal			
				STMR (sum of glyphosate and AMPA) = 1.4 mg/kg		
				According to the results of trials with tolerant cotton, a MRL of 5 mg/kg		
				could be sufficient. This		
				covers also the use in non-tolerant cotton, if applied according to the		
			9	GAP given. The proposed Codex MRL however, is acceptable. Therefore, a		
				MRL of 10 mg/kg is proposed for cotton seed. This proposal will cover all		
				uses of glyphosate in tolerant and non-tolerant cotton in Europe and in		
				the USA.		
				Since the commercial commodity of cotton contains only the CP4 EPSPS		
				there no difference in the residue behaviour of glyphosate within the		
				tolerant plant. Therefore no increased residue level of AMPA are		
				observed and there is no need to include this main metabolite of		
				glyphosate in the residue definition for enforcement purpose and for risk		
				assessment.		
Others		0.1*	0.1*			
5. Potatoes	none	0.1*	0.5	cGAP: NL: 2.2 kg as/ha, PHI: 7 d.	Only data for US and	
			Ē	IT: 4.32 kg as/ha, wiping; PHI:	The Netherlands	
				CH: 3 trials, 1.8 kg as/ha, PHI: 7 d		
				Glyphosate: 3 x < 0.05 mg/kg		
				AMPA: 2 x <0.05 mg/kg		
				NL: 11 trials, 0.72 - 2.88 kg as/ha, PHI: 6 - 7 d		
				Glyphosate: 4 x <0.05, 0.07, 0.08, 0.09, 0.11, 0.12, 0.21, 0.59		
				mg/kg		
				AMPA: all <0.05 mg/kg		
	1			R _{max} = 0.58 mg/kg, R _{ber} = 0.24 mg/kg, STMR = 0.08 mg/kg		
6. Tea	none	0.1*	2	cGAP: JP; 2.3 kg as/ha, PHI: 7 d.		

Groups of products	CODEX	Existing EU MRL	MRL proposal	Comments
		60 Te 100 Te		IN / TW: 9 trials, 3 x 2.16 kg as/ha, PHI: 8 - 15 d Glyphosate: 3 x <0.08, 0.1, 0.15, 0.61, 0.64, 0.8, 1.13 mg/kg AMPA: all <0.08 mg/kg R _{max} = 1.61 mg/kg, R _{ber} = 1.44 mg/kg, STMR = 0.15 mg/kg
7. Hops	none	0.1*	0.1*	No GAP, no residue data.
8. Cereals Buckwheat Barlev	20	20	0.1* 20	No GAP, no residue data. cGAP: N-EU: FR; 1 x 2.16 kg as/ha (pre-harvest, desiccation), PHI: 7 d.
				S-EU except FR: 2.7 kg as/ha, per-emergence, PHI:
				Glyphosate:
				4, 1.16,
				1.9, 2.1, 2 × 2.2, 2.24, 2.3, 2.37, 2.6, 2 × 2.7, 2.8, 2.9, 3.0, 3.3,
				3.5, 3.6, 3.7, 2 x 3.8, 2 x 4.0, 4.1, 4.2, 4.3, 4.4, 2 x 4.6, 2 x
				4.7, 2 × 4.8, 5.0, 5.1, 5.1, 5.2, 2 × 5.4, 5.5, 5.8, 5.81, 2 × 5.9, 5.92,
				6.0, 2 x 6.2, 3 x 6.4, 6.7, 6.71, 6.8, 6.99, 7.0, 3 x 7.2, 7.3, 2 x 7.4,
				7.6, 2 x 7.9, 8.0, 8.1, 8.4, 8.6, 8.9, 9.5, 2 x 9.6, 9.8, 9.93, 3 x
				11.0, 11.2, 11.8, 12.0, 12.47, 12.6, 12.7,
				14.8, 16.1, 18.0, 19.2, 20.3, 23.4, 32.8 mg/kg
				15 trials, N-EU, 1.96 - 3.2 kg glyphosate-trimesium/ha:
				Glyphosate (PMG-Anion):
				1.3, 1.6, 2.8, 3.6, 3.7, 4.4, 4.7, 5.0, 2 × 6.3, 8.1, 8.9, 9.1,
				13.0, 19.0 mg/kg
				$R_{max} = 16.4 \text{ mg/kg}$, $R_{ber} = 17.0 \text{ mg/kg}$, STMR = 5.8 mg/kg
				AMPA: 46 × <0.05, 4 × 0.05, 9 × 0.06, 4 × 0.07, 8 × 0.08, 5 × 0.09, 4
				x 0.1, 4 x 0.12, 0.13,

Groups of products	CODEX	Existing	MRL	Comments	
	MRL	EU MRL	proposal		
				2 x 0.14, 4 x 0.16, 0.17, 0.19, 3 x 0.2, 2 x 0.3 mg/kg	
				$R_{max} = 0.18 \text{ mg/kg}$, $R_{ber} = 0.18 \text{ mg/kg}$, STMR = 0.05 mg/kg	
				S-EU: No GAP for pre-harvest desiccation of cereals in S-EU therefore,	
				no residue data available and required.	
				MRL proposal based on data from trials in the northern region is	
				sufficient for all EU Member States.	
Oat	20	20	20	cGAP: N-EU: FR; 1 x 2.16 kg as/ha (pre-harvest, desiccation), PHI: 7 d.	
				S-EU except FR: 2.7 kg as/ha, per-emergence, PHI:	
				N-EU: 17 trials, 1 x 1.8 - 2.16 kg as/ha, PHI: 6 - 13 d	
				Glyphosate:	
				1.2, 2.1, 2.4, 3.2, 3.8, 5.3, 5.5, 7.1, 8.4, 8.5, 10.4, 12.4,	
ē				13.8, 17.1, 18.2 mg/kg	
				2 trials, DE, 2.4 kg glyphosate-trimesium/ha:	
				Glyphosate (PMG-Anion):	
				8.3, 14.0 mg/kg	
	_			R _{max} = 21.5 mg/kg, R _{ber} = 26.2 mg/kg, STMR = 8.3 mg/kg	
				AMPA: 5 x <0.05, 0.07, 3 x 0.1, 0.12, 0.31, 0.33 mg/kg	
				S-EU: No GAP for pre-harvest desiccation of cereals in S-EU therefore,	
				no residue data available and required.	
	-			MRL proposal based on data from trials in the northern region is	
				sufficient for all EU Member States.	
Millet				No special GAP. No residue data.	
Maize	-			cGAP: N-EU and S-EU (pending): Maize tolerant to glyphosate (line	
Maize grain	1		1	NK603), 1.44 kg as/ha at BBCH 19, PHI: 90 d.	
(Maize forage			1)	N-FR: 4 trials with interrow treatments of non-tolerant maize 1 x 0.54 -	

						1.32							2				each,		3-128					0.17,	02 d).			
Comments		4.32 kg as/ha,	PHI: 55 d.	Glyphosate: 0.07, 0.08, 0.15, 0.45 mg/kg.	AMPA: all <0.05 mg/kg.	S-FR: 8 trials with interrow treatments of non-tolerant maize 1 x 4.32	or 8.64 kg as/ha,	PHI: 64 d.	Glyphosate: $0.1, 2 \times 0.2, 2 \times 0.3, 2 \times 0.4, 0.5 \text{ mg/kg}$.	AMPA: all <0.05 mg/kg.	R _{max} = 0.67 mg/kg, R _{ber} = 0.75 mg/kg, STMR = 0.25 mg/kg		N-EU: 10 trials on glyphosate tolerant maize (line NK603: only CP4	EPSPS),	S-EU: 18 trials on glyphosate tolerant maize (line NK603: only CP4	EPSPS):	GAP: 3 subsequent uses at 1.1-1.2, 0.7-1.2, 1.1-1.5 kg as/ha each,	PHI: 83 - 128 d	Glyphosate in grain: 26 x <0.05, 0.05, 0.07 mg/kg (PHI: 83-128	d).	AMPA in grain:	all <0.05 mg/kg	Glyphosate in fodder:	8 x < 0.05, 4 x 0.06, 2 x 0.08, 2 x 0.09, 0.1, 0.11, 0.16, 0.17,	0.32, 0.35, 0.39, 0.44, 0.5, 0.52, 0.7, 0.96 mg/kg (PHI: 50-102 d).	R _{max} = 0.72 mg/kg, R _{ber} = 0.56 mg/kg, STMR = 0.09 mg/kg	AMPA in fodder: 27 x <0.05, 0.09 mg/kg	No trial according to GAP, all uses overdosed.
MRL	proposal											-																
Existing	EU MRL																											_
CODEX	MRL																		-									
Groups of products																												

Groups of products	CODEX	Existing	MRL	Comments	
	MRL	EU MRL	proposal		
				US: 22 trials on glyphosate tolerant maize (line MON 802: CP4 EPSPS	
				+ GOX):	
				GAP: 2 - 4 subsequent uses at 6.38+0.84, 6.38+0.84+0.84 or	
				6.38+0.84+0.84+0.84	
				kg as/ha each, PHI: 6-8 d.	
		,		Glyphosate: $19 \times < 0.05$, 0.06, 0.1, 0.4 mg/kg.	
				AMPA: 2 x <0.05, 5 x 0.1, 3 x 0.2, 6 x 0.3, 2 x 0.4, 0.5, 0.7, 1.0,	
				1.4 mg/kg.	
				Glyphosate + AMPA:	
				$0.05, 5 \times 0.2, 2 \times 0.3, 2 \times 0.4, 6 \times 0.5, 2 \times 0.6, 0.8, 1.1,$	
				1.5, 2.1 mg/kg.	
				$R_{max} = 1.67 \text{ mg/kg}$, $R_{ber} = 1.05 \text{ mg/kg}$, STMR = 0.5 mg/kg	
				USA-trials not acording to EU-GAP (overdosed and pre-harvest	
				treatment).	
				Based on the available data a MRL of 1 mg glyphosate/kg maize grain and	
				of 1 mg glyphosate/kg maize fodder for the use in Europe is proposed.	
				Based on the low residue situation of AMPA after treatment of	
				glyphosate non-tolerant and glyphosate tolerant maize (line NK603	
				containing only CP4 EPSPS which does not accelerate the formation of	
				AMPA) there is no need to included this metabolite in the residue	
				definition for maize.	
Rye		2	10	cGAP: N-EU: FR; 1 x 2.16 kg as/ha (pre-harvest, desiccation), PHI: 7 d.	
		No. of the		3-EU EXCEPT FR. 2.7 Kg 43/114, PEI-EITIEI BEITCE, PTI	

Groups of products	CODEX	Existing	MRL	Comments
	MRL	EU MRL	proposal	
				N-EU: 8 trials, 1 x 1.8 - 2.16 kg as/ha, PHI: 7 - 14 d
				Glyphosate: 2.9, 3.1, 4.6, 4.74, 5.3, 5.44, 15.6, 16.7 mg/kg
				$R_{max} = 25.0 \text{ mg/kg}$, $R_{ber} = 26.1 \text{ mg/kg}$, STMR = 5.0 mg/kg
				AMPA: <0.05, 2 x 0.21, 0.3, 0.35 mg/kg
				S-EU: No GAP for pre-harvest desiccation of cereals in S-EU therefore,
				no residue data available and required.
				MRL proposal based on data from trials in the northern region is
				sufficient for all EU Member States.
				A MRL of 20 mg/kg rye could be proposed based on these results.
				However, since this data base is small compared to the results of barley
				and wheat and extrapolation of wheat data to derive a MRL of rye is
				possible these data are included in the data pool of wheat. Therefore, a
				joint MRL of 10 mg/kg for both rye and wheat is proposed.
Rice	0.1*		0.1*	cGAP: IT; 4.32 kg as/ha, pre-plant treatment, PHI:
				N-EU: No GAP.
				No residue data available. No exceedence of MRL proposal
				expected. Extrapolation of data from pre-emergence treatment of
				other small grain cereals possible.
Sorghum	20	20	20	cGAP: US; ≤1.7 kg as/ha pre-harvest, PHI: 7 d.
				No GAP in EU, no residue data available.
				Existing EU import tolerance is based on residue data from trials
				conducted in the
				USA. This is confirmed by following data to which five further data from
				1997 was recently submitted:
				US: 13 trials and 2 processing studies, 1 x 1.7 kg as/ha, PHI: 6-8 d.
				Glyphosate:

	CODEX	Existing	MRL	Comments	
	MRL	EU MIRL	proposal		
				1.08, 1.09, 1.30, 1.42, 1.73, 1.83, 4.41, 4.47, 4.64, 5.29,	
				6.03, 6.31, 6.38, 12.50, 13.50 mg/kg.	
				R _{max} = 14.77 mg/kg, R _{ber} = 12.62 mg/kg, STMR = 4.47 mg/kg	
				AMPA: 3 x <0.05, 0.05, 0.07, 2 x 0.08, 3 x 0.09, 4 x 0.1, 0.2 mg/kg	
:			(
Triticale		2	10	cGAP: N-EU: FR; 1 x 2.16 kg as/ha (pre-harvest, desiccation), PHI: 7 d.	
				S-EU except FR: 2.7 kg as/ha, per-emergence, PHI:	
				No residue data available.	
				A MRL of 10 mg/kg is proposed based on the results from trials on wheat.	
Wheat	S	2	10	cGAP: N-EU: FR; 1 x 2.16 kg as/ha (pre-harvest, desiccation), PHI: 7 d.	
				S-EU except FR: 2.7 kg as/ha, per-emergence, PHI:	
				N-EU: 147 trials, 1 x 1.6 - 2.88 kg as/ha, PHI: 6 - 15 d	
				Glyphosate in wheat:	
				$0.09, 0.15, 2 \times 0.16, 0.17, 4 \times 0.2, 2 \times 0.24, 2 \times 0.28, 4 \times$	
				0.3, 0.31, 0.32, 0.34,	
				7 x 0.4, 0.43, 2 x 0.45, 0.46, 2 x 0.5, 0.52, 0.55, 0.58, 4 x	
				06 2 x 0 63 0 64 0 65	
				2 4 0 45 3 4 0 45 5 4 0 7 5 4 0 7 5 4 0 8 3 4 0 8 3	
				084 2×085 3×09	
			7.		
				2 x 0.93, 0.97, 2 x 1.0, 1.09, 5 x 1.1, 1.12, 6 x 1.2, 4 x 1.3,	
	_			1.39, 2 x 1.4, 1.42,	
				7 x 1.5, 1.57, 2 x 1.6, 1.69, 7 x 1.7, 2.0, 4 x 2.1, 3 x 2.2, 2 x	
	_			2.4, 2.5, 2.6, 3.0, 3.1, 3.11, 2 x 3.3, 3.4, 3.72, 2 x 3.8, 2 x 3.9,	
				4.03, 4.2, 4.6, 4.7, 4.8, 4.86, 5.5, 5.8, 7.9,	
	_				
				Glyphosate in rve:	
				2.9. 3.1. 4.6. 4.74. 5.3. 5.44. 15.6. 16.7 mg/kg	

Reasoned Opinion - Glyphosate MRL Review 2018 - Monsanto Comments

Groups of products	CODEX	Existing	MRL	Comments
	MRL	EU MRL	proposal	
				R _{max} = 7.2 mg/kg, R _{ber} = 4.4 mg/kg, STMR = 1.1 mg/kg AMPA in wheat: 85 x <0.05, 7 x 0.05, 0.06, 2 x 0.08, 0.06, 2 x 0.1,
				4 x 0.11, 0.12,
				2 × 0.36, 0.38, 0.66 mg/kg
				AMPA in rye:
				<0.05, 2 x 0.21, 0.3, 0.35 mg/kg
				S-EU: No GAP for pre-harvest desiccation of cereals in S-EU therefore,
				no residue data available and required.
				MRL proposal based on data from trials on rye and wheat in the northern
				region is sufficient for all EU Member States.
				In contrast to the evaluation in the DAR residue data of straw are not
				revised again for intake calculation by livestock. More important in
				lifestock nutrition are grass and hay. Since grassland treatment cause
				higher residues in grass and hay MRL derivation for food of animal origin
other cereals		0.1*	0.1*	is based on the corresponding data.
Sugar beets	none	1		cGAP: Non-tolerant beets:
Fodder beets				N-EU; wiping with 50 % solution, PHI:
				IT; wiping with 50 % solution, PHI:
				North: 31 trials, wiping with 25 - 50 % solution, PHI: 30 - 91 d
				Glyphosate in roots:
				23 x <0.05, 7 x 0.1, 0.5 mg/kg
				$R_{max} = 0.26 \text{ mg/kg}$, $R_{ber} = 0.1 \text{ mg/kg}$, STMR = 0.05 mg/kg
*				Glyphosate in leaves:
				15 x <0.05, 7 x 0.1, 0.2, 0.25, 0.4, 0.7, 1.0 mg/kg
				$R_{max} = 0.65 \text{ mg/kg}$, $R_{ber} = 0.2 \text{ mg/kg}$, STMR = 0.05 mg/kg
				AMPA in roots and leaves:
				all <0.05 mg/kg

Groups of products	CODEX	Existing EU MRL	MRL	Comments
				South: No residue data available.
				cGAP: <u>Tolerant beets</u> :
				DE; 2×1.08 or 3×0.72 kg as/ha (total: 2.16 kg as/ha) at the latest
				BBCH 39, PHI:
				S-EU; 2×1.08 or 3×0.72 kg kg as/ha (total: 2.16 kg as/ha) at the
				latest BBCH 19, PHI:
				The shortest PHI from the lastest application timing at BBCH 39 is
				considered at least 60 days. Therefore, only residue data obtained
				under these worst case conditions are used for evaluation:
				North: 7 trials in BE, DK, GB; < 3.0 kg as/ha, PHI: 63 - 89 d.
	_			South: 8 trials in ES, IT, S-FR; < 3.0 kg as/ha, PHI: 63 - 64 d.
				Glyphosate in roots:
	_			$0.08, 0.09, 0.1, 5 \times 0.2, 2 \times 0.3, 3 \times 0.4, 2 \times 0.5, 2 \times 0.7,$
	_			1.3 mg/kg
				R _{max} = 1.1 mg/kg, R _{ber} = 0.8 mg/kg, STMR = 0.3 mg/kg
	Total Services			Glyphosate in leaves:
				$<0.05, 0.08, 0.1, 4 \times 0.2, 2 \times 0.3, 0.4, 4 \times 0.5, 2 \times 0.7, 0.8,$
				0.9 mg/kg
				$R_{max} = 1.03 \text{ mg/kg}$, $R_{ber} = 1.0 \text{ mg/kg}$, STMR = 0.35 mg/kg
	-			AMPA in roots and leaves:
				all <0.05 mg/kg
				From the entire residue data generated in N-EU and S-EU the highest
				residue levels of
	_			1 mg/kg beet roots and tops is derived which can be used for assessing
				feed intake levels
				of domestic animals to derive MRI's of food of animal origin

Grass SO	Groups of products	CODEX	Existing EU MRL	MRL proposal	Comments
(hay or (hay o					
IT; 4.32 kg/ha (spraying North: 78 trials, 1 x 0.72 - 2.88 Glyphosate in grass: 1.0, 1.2, 1.8, 2.0, 2.4, 2. x 4.2, 4.3, 4.4, 4.7, 5.3, 5.5, 9.2, 9.6, 9.7, 10.6, 11.2, 13.9, 2 x 15.7, 16.0, 17.3, 17.22.0, 25.0, 2 x 28.0, 28.5, 43.3, 49.8, 50.0, 69.6, 80.8, 84.8 mg/kg. R _{max} = 118.9 mg/kg. R _{max} = 118.9 mg/kg, R _{ber} Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 21.4, 22.2, 23.2, 27.1, 32.6, Glyphosate: grass and P R _{max} = 114.7 mg/kg, R _{ber} 2 x 0.05, 0.06, 3 x 0.07, 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.22, 0.23,	Grass	20			
North: 78 trials, 1 x 0.72 - 2.88 Glyphosate in grass: 1.0, 1.2, 1.8, 2.0, 2.4, 2. x 4.2, 4.3, 4.4, 4.7, 5.3, 5.5, 9.2, 9.6, 9.7, 10.6, 11.2, 13.9, 2 x 15.7, 16.0, 17.3, 17.2, 22.0, 25.0, 2 x 28.0, 28.5, 43.3, 49.8, 50.0, 69.6, 80.8, 84.8 mg/kg. R _{max} = 118.9 mg/kg, R _{ber} Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 21.4, 22.2, 23.2, 27.1, 32.6, Glyphosate: grass and P R _{max} = 114.7 mg/kg, R _{ber} 2 x 0.05, 0.06, 3 x 0.07, 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.22, 0.23,		(hay or			IT; 4.32 kg/ha (spraying, pre-plant, post-harvest), PHI: -
Glyphosate in grass: 1.0, 1.2, 1.8, 2.0, 2.4, 2. x 4.2, 4.3, 4.4, 4.7, 5.3, 5.5, 9.2, 9.6, 9.7, 10.6, 11.2, 13.9, 2 x 15.7, 16.0, 17.3, 17.2, 22.0, 25.0, 2 x 28.0, 28.5, 43.3, 49.8, 50.0, 69.6, 80.8, 84.8 mg/kg. R _{max} = 118.9 mg/kg, R _{ber} Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 21.4, 22.2, 23.2, 27.1, 32.6, Glyphosate: grass and P R _{max} = 114.7 mg/kg, R _{ber} 2 x 0.05, 0.06, 3 x 0.07, 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.22, 0.23,		dny			
2 7 7., 7.		fodder)			Glyphosate in grass:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1					1.0, 1.2, 1.8, 2.0, 2.4, 2.5, 2.6, 3.0, 2 x 3.2, 3.5, 3.6, 3.7, 3.8, 4.0, 2
92, 9.6, 9.7, 10.6, 11.2, 13.9, 14.1, 14.5, 14.9, 2 x 15.7, 16.0, 17.3, 17.5, 18.2, 19.3, 2 x 19.6, 2 x 20.4, 2 x 21.2, 2 2.0, 25.0, 2 x 28.0, 28.5, 31.4, 34.4, 36.8, 38.0, 39.0, 40.0, 41.8, 43.3, 49.8, 50.0, 69.6, 80.8, 84.8, 93.7, 119.6, 138.0, 138.7, 344.2 mg/kg. R _{max} = 118.9 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 14.0 mg/kg Glyphosate in hay: 3.5, 7.1, 94, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.12, 0.14, 4 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.22, 0.23, 3 x 0.24, 2 x 0.28, 2 x 0.3, 0.31, 0.32, 2 x					
2 x 15.7, 16.0, 17.3, 17.5, 18.2, 19.3, 2 x 19.6, 2 x 20.4, 2 x 21.2, 22.0, 25.0, 2 x 28.0, 28.5, 31.4, 34.4, 36.8, 38.0, 39.0, 40.0, 41.8, 43.3, 49.8, 50.0, 69.6, 80.8, 84.8, 93.7, 119.6, 138.0, 138.7, 344.2 mg/kg. R _{max} = 118.9 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 14.0 mg/kg Glyphosate in hay: 3.5, 7.1, 94, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.12, 0.14, 4 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.23, 3 x 0.24, 2 x 0.38, 2 x 0.31, 0.32, 2 x					
22.0, 25.0, 2 × 28.0, 28.5, 31.4, 34.4, 36.8, 38.0, 40.0, 41.8, 43.3, 49.8, 50.0, 69.6, 80.8, 84.8, 93.7, 119.6, 138.0, 138.7, 344.2 mg/kg. R _{max} = 118.9 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 14.0 mg/kg Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 × 0.05, 0.06, 3 × 0.07, 2 × 0.09, 6 × 0.1, 0.11, 2 × 0.12, 0.14, 4 × 0.17, 2 × 0.18, 4 × 0.2, 2 × 0.21, 2 × 0.23, 0.24, 2 × 0.28, 2 × 0.3, 0.31, 0.32, 2 ×					2×15.7 , 16.0, 17.3, 17.5, 18.2, 19.3, 2×19.6 , 2×20.4 , 2×21.2 ,
mg/kg. R _{max} = 118.9 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 14.0 mg/kg Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.12, 0.14, 4 x 2 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.22, 0.23, 3 x 0.24, 2 x 0.28, 2 x 0.31, 0.32, 2 x					22.0, 25.0, 2 x 28.0, 28.5, 31.4, 34.4, 36.8, 38.0, 39.0, 40.0, 41.8,
mg/kg. R _{max} = 118.9 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 14.0 mg/kg Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.12, 0.14, 4 x 2 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.23, 3 x 0.24, 2 x 0.28, 2 x 0.3, 0.31, 0.32, 2 x					
R _{max} = 118.9 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 14.0 mg/kg Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.12, 0.14, 4 x 2 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.23, 3 x 0.24, 2 x 0.28, 2 x 0.3, 0.31, 0.32, 2 x					ng/kg.
Glyphosate in hay: 3.5, 7.1, 9.4, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.14, 4 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.23, 3 x 0.24, 2 x 0.28, 2 x 0.31, 0.32, 2 x					R _{max} = 118.9 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 14.0 mg/kg
3.5, 7.1, 9.4, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2, 21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.12, 0.14, 4 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.23, 3 x 0.24, 2 x 0.28, 2 x 0.3, 0.31, 0.32, 2 x					Glyphosate in hay:
21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg Glyphosate: grass and hay: R _{max} = 114.7 mg/kg, R _{ber} = 56.0 mg/kg, STMR = 15.7 mg/kg AMPA in grass: 2 x 0.05, 0.06, 3 x 0.07, 2 x 0.09, 6 x 0.1, 0.11, 2 x 0.14, 4 x 0.17, 2 x 0.18, 4 x 0.2, 2 x 0.21, 2 x 0.23, 3 x 0.24, 2 x 0.3, 0.31, 0.32, 2 x					3.5, 7.1, 9.4, 11.2, 12.1, 12.8, 14.8, 15.6, 17.4, 18.6, 20.0, 21.2,
17, 2					21.4, 22.2, 23.2, 27.1, 32.6, 41.2, 47.4, 81.8, 100.8, 166.0 mg/kg
17, 23					Glyphosate: grass and hay:
17, 23					$R_{max} = 114.7 \text{ mg/kg}$, $R_{ber} = 56.0 \text{ mg/kg}$, STMR = 15.7 mg/kg
17, 2					
17, 2					AMPA in grass:
17, 2)					2×0.05 , 0.06, 3×0.07 , 2×0.09 , 6×0.1 , 0.11, 2×0.12 , 0.14, 4×0.12
2 x 0.21, 2 x 0.22, 0.23, 3 x 0.24, 2 x 0.3, 0.31, 0.32, 2 x					3.17, 2 x 0.18, 4 x 0.2,
					2×0.21 , 2×0.22 , 0.23 , 3×0.24 , 2×0.28 , 2×0.3 , 0.31 , 0.32 , 2×0.3

Groups of products	CODEX	Existing	MRL	Comments
	MRL	EU MRL	proposal	
				0.34, 2 x 0.38, 0.41, 0.42, 0.43, 0.44, 2 x 0.51, 0.53, 0.59, 0.61, 0.78,
				0.8, 0.85, 0.86, 0.93, 1.3, 1.57, 3.41, 5.9 mg/kg
				AMPA in hay:
				<0.05, 0.21, 2 x 0.22, 0.28, 0.3, 0.37, 0.38, 0.49, 0.57, 0.79, 0.96, 2
				x 1.72 mg/kg
	1			According to the critical GAP, spraying 5 days before use of grass or hay,
				residues of glyphosate of up to >300 mg/kg are expected in grass an hay.
				The "MRL" is derived from all residue values of grass and hay obtained at
				PHI = 5 - 16 days. Since in the laying hen feeding studies glyphosate
				residues reached a plateau quickly the most suitable value from the MRL
				calculation is R _{calc} . Glyphosate treated grass desiccates quickly.
				Therefore, there is no significant difference in the residue levels of grass
				and hay. This is confirmed by a couple of data obtained in grass and hay
				at PHI = 5 d in trials conducted in GB in 1992 from which no clear drying
				factors can be derived $(f = -0.8 \text{ to } +4.4)$.
				South: No residue data available.
				Despite of lacking data from S-EU the residue data pool from N-EU are
				considered to be sufficient to propose a highest residue level at 56 mg/kg
				grass and hay which can be used for assessing feed intake levels of
				domestic animals to derive MRL's of food of animal origin.

Conclusions

Glyphosate:

MRLs proposed	50	mg/kg	wild mushrooms
	20	mg/kg	barley, oats, sorghum, soybeans, sunflower seed
	10	mg/kg	cotton seed, linseed, lupine seed, mustard seed, peas, rape seed, rye, triticale, v
	2	mg/kg	beans, tea, kidney of cattle
	1	mg/kg	maize grain, olives for oil production
	0.2	mg/kg	liver of cattle
	0.5	mg/kg	orange, tangerine, grapes, potatoes, kidney of pig
	0.1	mg/kg	grapefruit, lemon, mandarin, kidney of poultry
	0.1*	mg/kg	other products of plant origin

TMDI (WHO model):

17 %

TMDI (German model 4-6 year old girl, bw 13.5 kg): 30 %

An IEDI calculation was not performed since TMDI calculation suggest that no risk may occur.

The proposed MRLs are acceptable.

Documents

- 1. Draft assessment report on glyphosate, glyphosate trimesium, 27 July 1999
- 2. Commission Directive 2001/99/EC of 20.11.2001, OJ No L 304, p 14

APPENDIX 3: Studies submitted to the RMS in 2016

A.3.1. Additional residue studies conducted in 2014/2015 for consideration by EFSA for Art 12 review of glyphosate MRLs

Use	Crop	Rate	PHI	Numbe	r of trials	Report number
		(kg/ha)	(days)	North	South	
Pre-harvest	Sunflower	2.16	7		4	MSL0027504
						MSL0027073
Pasture renovation	Grass	3.6	7	A St. Veget	4	MSL0027072
Applied during dormancy	Alfalfa	0.36	Jun Val	44	2	MSL0027221
Weed control in	Nuts	3.6	7		2	MSL0027487
orchards	Apricots	3.6	7		4	MSL0027488
	Grapes	3.6	7	7	8	MSL0027069
		-		111.71	Shires	MSL0027070
						MSL0027071
	Bananas	3.6	1		4	MSL0027222
	Kiwi	3.6	7		2	MSL0027501
Inter-row	Parsley	1.08	60	2	2	MSL0027492
application	Tomatoes	1.08	60		4	MSL0027498
	Cotton	1.8	30		4	MSL0027491
	Onions	1.08	60	2	4	MSL0027499
	Strawberries	1.08	30	1	2	MSL0027495
	Courgettes	1.08	60	2	2	MSL0027496
	Cucumber	1.08	60	2	2	MSL0027497
	Radish	1.08	30		2	MSL0027500
	Carrots	1.08	60		4	MSL0027502

A.3.2. Earlier studies that were not reviewed at EU level (only at MS level)

Use	Crop	Rate	PHI (days)	Number	r of trials	Report number
		(kg/ha)	(days)	North	South	1
Pre-harvest	Corn	1.80	14	8		99GLY02
						00MONAA1503

A 3.3. Available since end of April 2016 (not submitted)

Use	Crop	Rate (kg/ha)	PHI (days)	Number	of trials	Report number
				North	South	
Inter-row	Lettuce	1.08	45-19	2	4	MSL0027493
	Green beans		60-30	4	4	MSL0027494
Orchards	Grapes	3.6	7	2		MSL0027503
Weed wiper	Turnips	1.44	61-59	4	4	MSL0027489
	Rice		30-20			MSL0027490

A.3.4. List of studies submitted to the RMS (October 2016) in support of Import tolerances/Codex MRLs

<u>Note</u>: The <u>highlighted</u> studies aren't Monsanto studies and were not submitted by Monsanto but by the other data owners

Beans

5.1.2.e Woo . 2002. Magnitude of Glyphosate Residues in dried shelled beans following preharvest application of Roundup UltraMAX Herbicide. Monsanto Company, Report MSL 17194. Unpublished

5.1.2.e Woo 1996a. Residues of glyphosate and AMPA in field beans (Vicia Faba) treated pre-harvest with MON 52276 herbicide. U.K. and Belgian field trials, 1995. Monsanto Company, Report MLL 30463. Unpublished

5.12.eWoo 1993a. Final Report on Projekt AS/1900/CN: Report on the Field Phase of a Programme to generate Crop Samples for Residue Analysis following the Application of CHE 3607 on Winter Field Beans. Cheminova A/S, Report GLY 140. Unpublished

5.1.2.e Woo 1994a. Determination of Residues of Glyphosate in Winter Field Beans (Seed and Haulm) - Treatment with CHE 3607 - UK, Season 1992. Cheminova A/S, Report GLY 215. Unpublished

5.12.e Woo 1994a. Final Report on Project AS/2219/CN: Programme to generate Crop Samples for Residue Analysis to Monitor the Dissipation of Glyphosate following Application of Glyfos for Pre-Harvest Desiccation of Winter Field Beans. Cheminova A/S, Report GLY 262. Unpublished

5.1.2 e Woo 1993. Determination of Residues of Glyphosate in Winter Field Beans (Seed and Haulm) - Treatment with CHE 3607 - UK, Season 1993. Cheminova A/S, Report GLY 305. Unpublished

5.1.2.e Woo. 1987. Residual glyphosate and aminomethylphosphonic acid in oilseedrape, beans and peas following application of MON 8762 - MON 8795 and Roundup herbicide, UK 1986 field trials. Monsanto Company, Report MLL 30180. Unpublished

5.1.2.e Woo 1983a. Glyphosate residues in beans following Roundup herbicide preharvest applications, UK 1980/1982 and Denmark 1982 trials. Monsanto Company, Report MLL 30109. Unpublished

Peas

5.1.2.e Woo. 1996b. Residues of glyphosate and AMPA in peas treated pre-harvest with MON 52776 herbicide. U.K. and Belgian field trials, 1995. Monsanto Company, Report MLL 30464. Unpublished

5.12.e.Woo 1992. Final Report on Project AS/1901/CN: Report on the Field Phase of a Study to generate Crop Samples for Residue Analysis following the application of CHE 3607 on Dried Peas. Cheminova A/S, Report GLY 141. Unpublished

- 5.1.2 e Woo J. 1994b. Determination of Residues of Glyphosate in Peas (Seed and Haulm) Treatment with CHE 3607 UK, Season 1992. Cheminova A/S, Report GLY 222. Unpublished
- 1993b. Final Report on Project AS/1909/CN: Report on the Field Phase of a Study to generate Crop Samples for Residue Analysis to monitor the Dissipation of Glyphosate following the Application of CHE 3607 on Dried Peas. Cheminova A/S, Report GLY 143. Unpublished
- ^{512.e Woo}, 5.1.2.e Woo. 1994c. Determination of Residues of Glyphosate in Peas (Seed and Haulm) Treatment with CHE 3607 UK, Season 1992. Cheminova A/S, Report GLY 221. Unpublished
- 5.1.2.e Woo. 1989. Glyphosate Residues in Canadian Field Peas and Lentils Following Preharvest Applications of Roundup Herbicide. Monsanto Company, Report MSL 9398. Unpublished
- 5.1.2.e Woo 1987. Residual glyphosate and aminomethylphosphonic acid in oilseedrape, beans and peas following application of MON 8762 MON 8795 and Roundup herbicide, UK 1986 field trials. Monsanto Company, Report MLL 30180. Unpublished
- 5.1.2.e Woo 1984. Glyphosate residues in peas following preharvest application with Roundup herbicide in Denmark and Belgium. Monsanto Company, Report MLL 30131. Unpublished

Soybeans

- 5.1.2.e Woo 1994a. Magnitude of Glyphosate Residues in Soybean Seed Following Preharvest Application of Roundup Herbicide. Monsanto Company, Report MSL 13283. Unpublished
- 5.1.2.e Woo 1983. Glyphosate residues in soybeans and soybean fractions following recirculating sprayer and preharvest topical treatments with Roundup herbicide. Monsanto Company, Report MSL 3259. Unpublished

Banana

- 5.1.2.e Woo 5.1.2.e Woo. 2003a. Study of glyphosate residues in bananas after the application of the formulation Roundup Transorb. Embrapa Report 57/2003. Monsanto Company. Unpublished
- 5.1.2.e Woo, 5.1.2.e Woo, 2003b. Study of glyphosate residues in bananas after the application of the formulation Roundup Transorb. Embrapa Report 61/2003. Monsanto Company. Unpublished
- 5.1.2.e Woo 222 2002. Report on a study of the residues from glyphosate and its metabolite AMPA in banana fruit. CEPPA Report 5385. Monsanto Company. Unpublished
- 5.1.2.e Woo, 5.1.2.e Woo. 2002a. Study of glyphosate residues in bananas after an application of the formulation Roundup Transorb. Embrapa Report 37/2002. Monsanto Company. Unpublished
- 5.1.2.e Woo ., 5.1.2.e Woo 2002b. Study of glyphosate residues in bananas after the application of the formulation Roundup Original at the pre-harvest stage of the cultivation. Monsanto Company, Report Embrapa 53/2002. Unpublished

5.1.2.e Woo, 5.1.2.e Woo, 5.1.2.e Woo, 5.1.2.e Woo, 1979. Glyphosate residues in bananas following bananacide, preplant, and post directed treatments with Roundup herbicide. Monsanto Company, Report MSL 00694. Unpublished

Barley

5.1.2.e Woo, 5.1.2.e Woo, 2000a. Glyphosate/Glyphosate-trimesium - Residue levels in barley from trials carried out in Northern Europe in 1999. Zeneca Agrochemicals, Report RJ2907B. Unpublished

5.1.2.e Woo . 2000. Glyphosate and AMPA residues in wheat and barley treated pre-harvest with Roundup (MON 2139) and MON 78294. 1999 Field trials in Belgium and France. Monsanto Company, Report MLL 31337. Unpublished

5.1.2.e Wool. 1999a. Glyphosate and AMPA residues in wheat and barley treated pre-harvest with Roundup herbicide and MON 14420. 1998 Field trials in Belgium and France. Monsanto Company, Report MLL 30815. Unpublished

^{5.1.2.e Woo} 1999. Glyphosate and AMPA Residues in Barley and Wheat following Pre-harvest Application of CHA 4521 and Glyfos in France 1998: Bridging Study. Cheminova A/S, Report GLY 528. Unpublished

5.1.2.e Woo 1997. Glyphosate Residues in Barley and Wheat following Pre-harvest Application of Roundup and Glyfos in France 1996. Cheminova A/S, Report GLY 418. Unpublished

5.1.2.e Wool 1991. Glyphosate and AMPA residues in wheat and barley following application of MON 52276, MON 44068 and Roundup herbicide, one week before crop harvest. French trials 1991. Monsanto Company, Report MLL 30281. Unpublished

Maize

5.1.2.e Woo. 1999. Magnitude of Glyphosate Residues in Corn Raw Agricultural Commodities following Preharvest Application of Roundup Ultra Herbicide. Monsanto Company, Report MSL 14917. Unpublished

5.1.2.e Woo 1995a. Magnitude of Glyphosate Residues in Corn Raw Agricultural Commodities Following Preharvest Application of Roundup Herbicide. Monsanto Company, Report MSL 13654. Unpublished

Oats

5.1.2.e Woo 2002a. Glyphosate: Residue levels in oats (grain and straw) from trials conducted with Touchdown IQ and Touchdown XP in Canada during 2001. Syngenta, Report CER 01307/01, Unpublished

- 512e Wood. 1994b. Final Report on Project AS/2206/CN: Programme to generate Crop Samples for Residue Analysis Following Application of Glyfos with and without Frigate for Pre-Harvest Desiccation of Winter Dats. Cheminova A/S, Report GLY 282. Unpublished
- 5.1.2.e Woo. 1995a. Determination of Residue of Glyphosate on Winter Oats (Grain and Straw) Treatment with either CHE 3607 or CHE 3607/Frigate UK, Season 1993. Cheminova A/S, Report GLY 297. Unpublished
- 512eWoo 1994c. Final Report on Project AS/2216/CN: Programme to Generate Crop Samples for Residue Analysis to Monitor the Dissipation of Glyphosate following Application of Glyfos With and without Frigate for Pre-Harvest Desiccation of Winter Oats. Cheminova A/S, Report GLY 261. Unpublished
- 5.1.2.e Woo 1994. Determination of Residues of Glyphosate in Winter Oats (Grain, Straw and Whole Plant) Treatments with either CHE 3607 or CHE 3607/Frigate UK, Season 1993. Cheminova A/S, Report GLY 270. Unpublished
- 5.1.2.e Woo 1985. Glyphosate residues in rye and oat following Roundup herbicide preharvest applications, Denmark 1984 trials. Monsanto Company, Report MLL 30150. Unpublished
- 5.1.2.e Woo 1982. Glyphosate residues in cereal grain and straw following preharvest treatment with Roundup herbicide in the United Kingdom 1982 trials part I. Monsanto Company, Report MLL 30087. Unpublished

Sorghum

- 5.1.2.e Woo 1998. Magnitude of Glyphosate Residues in Grain Sorghum Raw Agricultural Commodities Following Preharvest Application of Roundup Ultra Herbicide. Monsanto Company, Report MSL 14918. Unpublished
- 5.1.2.e Woo 1993b. Magnitude of Glyphosate Residues Following Preharvest Use in Milo Raw Agricultural Commodities. Monsanto Company, Report MSL 13037. Unpublished

Wheat

- 5.1.2.e Woo C. 2000b. Glyphosate/Glyphosate-trimesium: Residue levels in wheat trials carried but in Northern Europe during 1999. Zeneca Report No. RJ2910B.Unpublished
- 5.1.2.e Woo

 . 2000. Glyphosate and AMPA residues in wheat and barley treated pre-harvest with Roundup (MON 2139) and MON 78294. 1999 Field trials in Belgium and France. Monsanto Company, Report MLL 31337. Unpublished
- 5.1.2.e Woo. 1999a. Glyphosate and AMPA residues in wheat and barley treated pre-harvest with Roundup herbicide and MON 14420. 1998 Field trials in Belgium and France. Monsanto Company, Report MLL 30815. Unpublished
- 5.1.2.e Woo 1999. Glyphosate and AMPA Residues in Barley and Wheat following Pre-harvest Application of CHA 4521 and Glyfos in France 1998: Bridging Study. Cheminova A/S, Report GLY 528. Unpublished

5.1.2.e Woo 1997. Glyphosate Residues in Barley and Wheat following Pre-harvest Application of Roundup and Glyfos in France 1996. Cheminova A/S, Report GLY 418. Unpublished

5.1.2.e Wool 1991. Glyphosate and AMPA residues in wheat and barley following application of MON 52276, MON 44068 and Roundup herbicide, one week before crop harvest. French trials 1991. Monsanto Company, Report MLL 30281. Unpublished

Cotton

5.1.2.e Woo 2003. Magnitude of Glyphosate Residues in Roundup Ready® Flex Cotton Raw Agricultural Commodities Following Topical Applications of a Glyphosate-Based Formulation. Monsanto Company, Report MSL 17635. Unpublished

Sunflower

5.1.2.e Woo 5.1.2.e Woo 2001. Combined decline and magnitude of residues of glyphosate in sunflower seed grown in Hungary following applications of Roundup - Season 2000. Monsanto Company, Report 00 MON AA 05 04. Unpublished

5.1.2 e Woo. 2002. Residue study with glyphosate and AMPA metabolite in sunflower by GC/MS. Monsanto Company, Report 99 GLY 01. Unpublished

Tea

5.1.2.e Woo^{5,12e woo} 1991. Report on the Determination of Glyphosate and Metabolite AMPA in Tea. Monsanto Company. Unpublished

5.1.2.e Woo, 5.1.2.e Woo and instant tea following postemergent directed treatment in tea plantations with Roundup herbicide. Monsanto Company, Report MSL 01582. Unpublished

^{5.1.2 e Woo}, 5.1.2 e Woo 5.1.2 e Woo 5.1.2 e Woo, 5.1.2 e Woo, 5.1.2 e Woo 1979. Glyphosate residues in tea leaves following postemergent directed treatment with Roundup herbicide. Monsanto Company, Report MSL 0980. Unpublished

Sugarcane

5.1.2.e Woo. 1978. Glyphosate residues in sugarcane and related mill fractions following sugarcane ripener treatment. Monsanto Company, Report MSL 0264. Unpublished [MON 5.10.1.1]

Lentils

5.1.2.e Woo 1989. Glyphosate Residues in Canadian Field Peas and Lentils Following Preharvest Applications of Roundup Herbicide. Monsanto Company, Report MSL 9398. Unpublished [MON 5.2.3.4]

5.1.2.e Woo 1984. Glyphosate residues in peas following preharvest application with Roundup herbicide in Denmark and Belgium. Monsanto Company, Report MLL 30131. Unpublished

Sweet corn

5.1.2 e Woo, 2009. Magnitude of Glyphosate Residues in Roundup Ready® Sweet Corn Raw Agricultural Commodities Following Applications of a Glyphosate-Based Formulation. Monsanto Company, Report MSL 18114. Unpublished.

5.1.2.e Woo, 2009. Magnitude of Glyphosate Residues in Sweet Corn Raw Agricultural Commodities Obtained from Roundup Ready Corn 2® Technology Following Applications of a Glyphosate-Based Formulation. U.S. and Canada 2008 Trials. Monsanto Company, Report MSL0021170. Unpublished.

Sugarbeets

5.1.2.e Woo, 5.1.2.e Woo 2005. Magnitude of Glyphosate Residues in Roundup Ready® Sugar Beet Raw Agricultural Commodities Following Applications of a Glyphosate-Based Formulation. Canada Trials. Monsanto Company, Report MSL 19260. Unpublished.

5.1.2.e Woo, 5.1.2.e Woo 2005. Magnitude of Glyphosate Residues in Roundup Ready Sugar Beet Raw Agricultural Commodities Following Applications of a Glyphosate-Based Formulation. U.S. Trials. Monsanto Company, Report MSL 19259. Unpublished.

5.1.2.e Woo 2007. Magnitude of Glyphosate Residues in Roundup Ready Sugar Beet Raw Agricultural Commodities Following Applications of a Glyphosate-Based Formulation. U.S. 2006 Trials. Monsanto Company, Report MSL 20193. Unpublished. .

Rapeseed

Data submitted by Dupont – references not available to Monsanto

List of residue studies on canola containg the GOX gene

5.1.2.e Woo 5.1.2.e Woo 1994, Glyphosate Residues In Canadian Canola Raw Agricultural Commodities And Processed Canola Fractions, Monsanto Company Report MSL 0012781, Unpublished

5.1.2.e Woo 5.1.2.e Woo 1994, , Glyphosate Residues in Roundup Tolerant Canola Raw Agricultural Commodities [1993] , Monsanto Company Report MSL 0013265, Unpublished

5.1.2.e Woo 5.1.2.e Woo, 1998 Glyphosate Residues in Roundup Ready Canola Seed Following Topical Application of Roundup Ultra Herbicide, Mosanto Company Report MSL 0014989, Unpublished